Classical and Quantum Dynamics

From Classical Paths to Path Integrals

  • Walter Dittrich
  • Martin Reuter

Table of contents

  1. Front Matter
    Pages i-xvi
  2. Walter Dittrich, Martin Reuter
    Pages 1-2
  3. Walter Dittrich, Martin Reuter
    Pages 3-16
  4. Walter Dittrich, Martin Reuter
    Pages 17-22
  5. Walter Dittrich, Martin Reuter
    Pages 23-44
  6. Walter Dittrich, Martin Reuter
    Pages 45-57
  7. Walter Dittrich, Martin Reuter
    Pages 59-74
  8. Walter Dittrich, Martin Reuter
    Pages 75-92
  9. Walter Dittrich, Martin Reuter
    Pages 93-117
  10. Walter Dittrich, Martin Reuter
    Pages 119-131
  11. Walter Dittrich, Martin Reuter
    Pages 133-140
  12. Walter Dittrich, Martin Reuter
    Pages 141-156
  13. Walter Dittrich, Martin Reuter
    Pages 157-163
  14. Walter Dittrich, Martin Reuter
    Pages 165-174
  15. Walter Dittrich, Martin Reuter
    Pages 175-183
  16. Walter Dittrich, Martin Reuter
    Pages 185-195
  17. Walter Dittrich, Martin Reuter
    Pages 197-204
  18. Walter Dittrich, Martin Reuter
    Pages 205-209
  19. Walter Dittrich, Martin Reuter
    Pages 211-222
  20. Walter Dittrich, Martin Reuter
    Pages 223-245

About this book

Introduction

Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals.

The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

Keywords

Action Angle Variable Adiabatic Invariance Physics Berry's Phase Canonical Perturbation Theory Hamilton Jacobi Equation Introduction to Classical and Quantum Field Theory Path Integral Physics Schwinger Action Principle Textbook Classical Dynamics Textbook Quantum Dynamics Textbook Quantum Mechanics Topology Quantum Mechanics Lie Brackets

Authors and affiliations

  • Walter Dittrich
    • 1
  • Martin Reuter
    • 2
  1. 1.Institute of Theoretical PhysicsUniversity of TübingenTübingenGermany
  2. 2.Institute of PhysicsUniversity of MainzMainzGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-58298-6
  • Copyright Information Springer International Publishing AG 2017
  • Publisher Name Springer, Cham
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-319-58297-9
  • Online ISBN 978-3-319-58298-6
  • About this book
Industry Sectors
Oil, Gas & Geosciences