Information Fusion for Cyber-Security Analytics

  • Izzat M Alsmadi
  • George Karabatis
  • Ahmed Aleroud

Part of the Studies in Computational Intelligence book series (SCI, volume 691)

Table of contents

  1. Front Matter
    Pages i-x
  2. Ahmed AlEroud, George Karabatis
    Pages 1-16
  3. Ahmed AlEroud, George Karabatis
    Pages 17-51
  4. Ahmed AlEroud, George Karabatis
    Pages 53-75
  5. Zheng Yan, Raimo Kantola, Lifang Zhang, Yutan Ma
    Pages 77-109
  6. Josephine M. Namayanja, Vandana P. Janeja
    Pages 111-127
  7. George S. Oreku, Fredrick J. Mtenzi
    Pages 129-153
  8. Mohamed Abdlhamed, Kashif Kifayat, Qi Shi, William Hurst
    Pages 155-174
  9. Kaj Grahn, Magnus Westerlund, Göran Pulkkis
    Pages 175-193
  10. C. V. Anchugam, K. Thangadurai
    Pages 195-228
  11. M. L. Gavrilova, F. Ahmed, S. Azam, P. P. Paul, W. Rahman, M. Sultana et al.
    Pages 229-251
  12. Izzat M. Alsmadi, Ahmed AlEroud
    Pages 297-306
  13. Harleen Kaur, Khairaj Ram Choudhary
    Pages 307-331
  14. Izzat M. Alsmadi, Iyad AlAzzam, Mohammed Akour
    Pages 333-369
  15. Back Matter
    Pages 371-379

About this book

Introduction

This book highlights several gaps that have not been addressed in existing cyber security research. It first discusses the recent attack prediction techniques that utilize one or more aspects of information to create attack prediction models. The second part is dedicated to new trends on information fusion and their applicability to cyber security; in particular, graph data analytics for cyber security, unwanted traffic detection and control based on trust management software defined networks, security in wireless sensor networks & their applications, and emerging trends in security system design using the concept of social behavioral biometric. The book guides the design of new commercialized tools that can be introduced to improve the accuracy of existing attack prediction models. Furthermore, the book advances the use of Knowledge-based Intrusion Detection Systems (IDS) to complement existing IDS technologies. It is aimed towards cyber security researchers.

 

Keywords

Cyber security Attack prediction models Information fusion Information Fusion for Security Analytics Knowledge-based Intrusion Detection Systems (IDSs) IDS technologies

Editors and affiliations

  • Izzat M Alsmadi
    • 1
  • George Karabatis
    • 2
  • Ahmed Aleroud
    • 3
  1. 1.Department of Computing and Cyber SecurityUniversity of Texas A&MSan AntonioUSA
  2. 2.Department of Information SystemsUniversity of Maryland Baltimore County (UMBC)BaltimoreUSA
  3. 3.Department of Computer Information SystemsYarmouk UniversityIrbidJordan

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-44257-0
  • Copyright Information Springer International Publishing Switzerland 2017
  • Publisher Name Springer, Cham
  • eBook Packages Engineering
  • Print ISBN 978-3-319-44256-3
  • Online ISBN 978-3-319-44257-0
  • Series Print ISSN 1860-949X
  • Series Online ISSN 1860-9503
  • About this book
Industry Sectors
Pharma
Automotive
Biotechnology
Electronics
Telecommunications
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences