Differential Topology

  • Amiya Mukherjee

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Amiya Mukherjee
    Pages 1-42
  3. Amiya Mukherjee
    Pages 69-104
  4. Amiya Mukherjee
    Pages 105-131
  5. Amiya Mukherjee
    Pages 133-167
  6. Amiya Mukherjee
    Pages 169-198
  7. Amiya Mukherjee
    Pages 199-223
  8. Amiya Mukherjee
    Pages 225-265
  9. Amiya Mukherjee
    Pages 267-298
  10. Amiya Mukherjee
    Pages 299-340
  11. Back Matter
    Pages 341-349

About this book

Introduction

This book presents a systematic and comprehensive account of the theory of differentiable manifolds and provides the necessary background for the use of fundamental differential topology tools. The text includes, in particular, the earlier works of Stephen Smale, for which he was awarded the Fields Medal. Explicitly, the topics covered are Thom transversality, Morse theory, theory of handle presentation, h-cobordism theorem, and the generalised Poincaré conjecture. The material is the outcome of lectures and seminars on various aspects of differentiable manifolds and differential topology given over the years at the Indian Statistical Institute in Calcutta, and at other universities throughout India.

The book will appeal to graduate students and researchers interested in these topics. An elementary knowledge of linear algebra, general topology, multivariate calculus, analysis, and algebraic topology is recommended.

Keywords

h-cobordism handle presentations immersions and embeddings manifolds smooth maps tubular neighbourhoods transversality

Authors and affiliations

  • Amiya Mukherjee
    • 1
  1. 1.Indian Statistical Institute Statistics and Mathematics UnitCalcuttaIndia

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-19045-7
  • Copyright Information Hindustan Book Agency 2015
  • Publisher Name Birkhäuser, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-19044-0
  • Online ISBN 978-3-319-19045-7
  • About this book
Industry Sectors
Aerospace