Fuzzy Social Choice Theory

  • Michael B. Gibilisco
  • Annie M. Gowen
  • Karen E. Albert
  • John N. Mordeson
  • Mark J. Wierman
  • Terry D. Clark

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 315)

Table of contents

  1. Front Matter
    Pages 1-13
  2. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 1-9
  3. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 11-20
  4. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 21-52
  5. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 53-87
  6. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 89-116
  7. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 117-148
  8. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 149-172
  9. Michael B. Gibilisco, Annie M. Gowen, Karen E. Albert, John N. Mordeson, Mark J. Wierman, Terry D. Clark
    Pages 173-181
  10. Back Matter
    Pages 183-185

About this book

Introduction

This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem;  the Gibbard-Satterthwaite theorem; and the median voter theorem.  After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a social choice that can be both strategy-proof and non-dictatorial. Moreover, the median voter theorem is shown to hold under strict fuzzy preferences,  but not under weak fuzzy preferences. By providing a standard model of fuzzy social choice and by drawing the necessary connections between the major theorems,  this book fills an important gap in the current literature and encourages future empirical research in the field.

Keywords

Fuzzy maximal set Fuzzy spatial model Fuzzy weak preference Group decision making Individual preference Social choice theorem Social preference relation Strategy-proof choice function

Authors and affiliations

  • Michael B. Gibilisco
    • 1
  • Annie M. Gowen
    • 2
  • Karen E. Albert
    • 3
  • John N. Mordeson
    • 4
  • Mark J. Wierman
    • 5
  • Terry D. Clark
    • 6
  1. 1.RochesterUSA
  2. 2.PapillionUSA
  3. 3.LincolnUSA
  4. 4.Department of MathematicsCreighton UniversityOmahaUSA
  5. 5.Department of Computer ScienceCreighton UniversityOmahaUSA
  6. 6.Department of Political ScienceCreighton UniversityOmahaUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-05176-5
  • Copyright Information Springer International Publishing Switzerland 2014
  • Publisher Name Springer, Cham
  • eBook Packages Engineering
  • Print ISBN 978-3-319-05175-8
  • Online ISBN 978-3-319-05176-5
  • Series Print ISSN 1434-9922
  • Series Online ISSN 1860-0808
  • About this book
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Electronics
Telecommunications
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences