Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance

  • Kipp van Schooten

Part of the Springer Theses book series (Springer Theses)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Kipp van Schooten
    Pages 1-33
  3. Kipp van Schooten
    Pages 35-49
  4. Kipp van Schooten
    Pages 89-90

About this book

Introduction

Colloidal nanocrystals show much promise as an optoelectronics architecture due to facile control over electronic properties afforded by chemical control of size, shape, and heterostructure. Unfortunately, realizing practical devices has been forestalled by the ubiquitous presence of charge "trap" states which compete with band-edge excitons and result in limited device efficiencies. Little is known about the defining characteristics of these traps, making engineered strategies for their removal difficult.

This thesis outlines pulsed optically detected magnetic resonance as a powerful spectroscopy of the chemical and electronic nature of these deleterious states. Counterintuitive for such heavy atom materials, some trap species possess very long spin coherence lifetimes (up to 1.6 µs). This quality allows use of the trapped charge's magnetic moment as a local probe of the trap state itself and its local environment. Beyond state characterization, this spectroscopy can demonstrate novel effects in heterostructured nanocrystals, such as spatially-remote readout of spin information and the coherent control of light harvesting yield.

Keywords

CdSe/CdS Nanocrystals Colloidal Nanocrystals Electron Spin Resonance Light Harvesting Optically Active Charge Traps Optically Active Charges Optically Detected Spin Coherence Pulsed Optically Detected Magnetic Resonance Seminconducting Nanocrystals Spin Coherence Spin Echo Envelop Modulation Trap States

Authors and affiliations

  • Kipp van Schooten
    • 1
  1. 1., Department of Physics & AstronomyUniversity of UtahSalt Lake CityUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-00590-4
  • Copyright Information Springer International Publishing Switzerland 2013
  • Publisher Name Springer, Heidelberg
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-319-00589-8
  • Online ISBN 978-3-319-00590-4
  • Series Print ISSN 2190-5053
  • Series Online ISSN 2190-5061
  • About this book
Industry Sectors
Electronics
Telecommunications