Skip to main content

Light-Sensitive Polymeric Nanoparticles Based on Photo-Cleavable Chromophores

  • Book
  • © 2013

Overview

  • Nominated as an outstanding Ph.D. thesis by the Max-Planck Institute for Polymer Research
  • Describes a versatile method for controlling the properties of light-responsive microgels and nanoparticles through molecular design of the respective building blocks
  • Demonstrates the effective synergy between different disciplines and forms the basis for a number of publications in internationally renowned journals
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

The triggered release of functional compounds from such polymeric carriers as micelles, nanoparticles or nanogels is a rapidly developing and highly versatile concept which is expected to be one of the key approaches to future therapeutics. In his thesis, Daniel Klinger highlights the approach of stimuli-responsive microgels for such applications and discusses why especially light as a trigger has an outstanding position amongst the family of conventional stimuli. Based on these considerations, the author focuses on the design, synthesis and characterization of novel photo-sensitive microgels and nanoparticles as potential materials for the loading and light-triggered release/accessibility of functional compounds. Starting from the synthesis of photo-cleavable organic building blocks and their use in the preparation of polymeric nanoparticles, continuing to the examination of their loading and release profiles, and concluding with biological in vitro studies of the final materials, Daniel Klinger’s work is an excellent example of the multidisciplinary research needed for the successful development of new materials in this field and has led to a number of further publications in internationally respected journals.

Authors and Affiliations

  • Materials Research Institute, University of California, Santa Barbara, USA

    Daniel Klinger

Bibliographic Information

Publish with us