Skip to main content

A First Introduction to Quantum Physics

  • Textbook
  • © 2023
  • Latest edition

Overview

  • Presents minimal physics and maths background required for an intuitive development of quantum theory
  • Offers over 50 interactive figures to develop hands-on intuition of quantum mechanical principles
  • Contains a complete set of more than 100 end-of-chapter exercises

Part of the book series: Undergraduate Lecture Notes in Physics (ULNP)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

In this undergraduate textbook, now in its 2nd edition, the author develops the quantum theory from first principles based on very simple experiments: a photon traveling through beam splitters to detectors, an electron moving through magnetic fields, and an atom emitting radiation. From the physical description of these experiments follows a natural mathematical description in terms of matrices and complex numbers.

The first part of the book examines how experimental facts force us to let go of some deeply held preconceptions and develops this idea into a description of states, probabilities, observables, and time evolution. The quantum mechanical principles are illustrated using applications such as gravitational wave detection, magnetic resonance imaging, atomic clocks, scanning tunneling microscopy, and many more. The first part concludes with an overview of the complete quantum theory.

The second part of the book covers more advanced topics, including the concept ofentanglement, the process of decoherence or how quantum systems become classical, quantum computing and quantum communication, and quantum particles moving in space. Here, the book makes contact with more traditional approaches to quantum physics. The remaining chapters delve deeply into the idea of uncertainty relations and explore what the quantum theory says about the nature of reality.

The book is an ideal accessible introduction to quantum physics, tested in the classroom, with modern examples and plenty of end-of-chapter exercises.



Similar content being viewed by others

Keywords

Table of contents (11 chapters)

Authors and Affiliations

  • University of Sheffield, Sheffield, UK

    Pieter Kok

About the author

Pieter Kok is Professor of Theoretical Physics at the University of Sheffield, UK. His research interests include quantum information theory and quantum precision measurements. He studied physics at Utrecht University in the Netherlands and received his Ph.D. in quantum teleportation from the University of Wales in 2001. He has contributed to practical architectures for quantum computing and Heisenberg-limited quantum metrology and imaging.

Bibliographic Information

Publish with us