Advertisement

Porous and Complex Flow Structures in Modern Technologies

  • Adrian Bejan
  • Ibrahim Dincer
  • Sylvie Lorente
  • Antonio F. Miguel
  • A. Heitor Reis

Table of contents

  1. Front Matter
    Pages i-xii
  2. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 1-29
  3. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 31-66
  4. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 67-124
  5. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 125-192
  6. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 193-246
  7. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 247-282
  8. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 283-314
  9. Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. Heitor Reis
    Pages 315-347
  10. Back Matter
    Pages 349-396

About this book

Introduction

Porous and Complex Flow Structures in Modern Technologies represents a new approach to the field, considering the fundamentals of porous media in terms of the key roles played by these materials in modern technology. Intended as a text for advanced undergraduates and as a reference for practicing engineers, the book uses the physics of flows in porous materials to tie together a wide variety of important issues from such fields as biomedical engineering, energy conversion, civil engineering, electronics, chemical engineering, and environmental engineering.

For example, flows through porous ground play a central role in energy exploration and recovery (oil, geothermal fluids), energy conversion (effluents from refineries and power plants), and environmental engineering (leachates from waste repositories). Similarly, the demands of miniaturization in electronics and in biomedical applications are driving research into the flow of heat and fluids through small-scale porous media (heat exchangers, filters, gas exchangers). Filters, catalytic converters, the drying of stored grains, and a myriad of other applications involve flows through porous media.

Another new feature is the ‘constructal’ approach to the generation of flow structures for maximal global performance (e.g. maximal heat transfer density) at decreasing length scales. In this direction, the optimized structures become ‘designed porous media’.

By providing a unified theoretical framework that includes not only the traditional homogeneous and isotropic media but also coarse structures in which the assumptions of representative elemental volumes or global thermal equilibrium fail, the book provides practicing engineers the tools they need to analyze complex situations that arise in practice. This volume includes examples, a large number of current references and an extensive glossary of symbols.

Keywords

Natur Technologie Transport biomedical application biomedical applications biomedical engineering development electronics environment model modeling physics technology thermodynamics

Authors and affiliations

  • Adrian Bejan
    • 1
  • Ibrahim Dincer
    • 2
  • Sylvie Lorente
    • 3
  • Antonio F. Miguel
    • 4
  • A. Heitor Reis
    • 4
  1. 1.Dept. of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  2. 2.School of Manufacturing EngineeringUniversity of Ontario Institute of TechnologyOshawaCanada
  3. 3.Institut National des Sciences Appliquées, Département de Génie CivilLaboratoire Matériaux et Durabilité des ConstructionsToulouseFrance
  4. 4.Departamento de Fisica, Colegio Luis VerneyUniversidade de ÉvoraÉvoraPortugal

Bibliographic information

Industry Sectors
Pharma
Materials & Steel
Automotive
Chemical Manufacturing
Biotechnology
Electronics
Consumer Packaged Goods
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences
Engineering