Advertisement

Sphere Packings, Lattices and Groups

  • J. H. Conway
  • N. J. A. Sloane

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 290)

Table of contents

  1. Front Matter
    Pages i-xliii
  2. J. H. Conway, N. J. A. Sloane
    Pages 1-30
  3. J. H. Conway, N. J. A. Sloane
    Pages 31-62
  4. J. H. Conway, N. J. A. Sloane
    Pages 63-93
  5. J. H. Conway, N. J. A. Sloane
    Pages 94-135
  6. John Leech, N. J. A. Sloane
    Pages 136-156
  7. J. H. Conway, N. J. A. Sloane
    Pages 157-180
  8. N. J. A. Sloane
    Pages 181-205
  9. J. H. Conway, N. J. A. Sloane
    Pages 206-244
  10. N. J. A. Sloane
    Pages 245-266
  11. J. H. Conway
    Pages 267-298
  12. J. H. Conway
    Pages 299-330
  13. J. H. Conway
    Pages 331-336
  14. A. M. Odlyzko, N. J. A. Sloane
    Pages 337-339
  15. E. Bannai, N. J. A. Sloane
    Pages 340-351
  16. J. H. Conway, N. J. A. Sloane
    Pages 352-405
  17. J. H. Conway, N. J. A. Sloane
    Pages 406-420
  18. R. E. Borcherds
    Pages 421-426
  19. B. B. Venkov
    Pages 427-438
  20. J. H. Conway, A. M. Odlyzko, N. J. A. Sloane
    Pages 439-442
  21. J. H. Conway, N. J. A. Sloane
    Pages 443-448
  22. J. H. Conway, N. J. A. Sloane
    Pages 449-475
  23. J. H. Conway, R. A. Parker, N. J. A. Sloane
    Pages 478-505
  24. J. H. Conway, N. J. A. Sloane
    Pages 506-512
  25. R. E. Borcherds, J. H. Conway, L. Queen
    Pages 513-521
  26. J. H. Conway, N. J. A. Sloane
    Pages 522-526
  27. J. H. Conway, N. J. A. Sloane
    Pages 532-553
  28. R. E. Borcherds, J. H. Conway, L. Queen, N. J. A. Sloane
    Pages 568-571
  29. Back Matter
    Pages 572-682

About this book

Introduction

The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.

Keywords

Dimension Lattice Lie algebra algebra automorphism classification coding coding theory data compression error-correcting code group theory mathematics number theory quadratic form ring theory

Authors and affiliations

  • J. H. Conway
    • 1
  • N. J. A. Sloane
    • 2
  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Mathematical Sciences Research CenterAT&T Bell LaboratoriesMurray HillUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4757-2249-9
  • Copyright Information Springer-Verlag New York 1993
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4757-2251-2
  • Online ISBN 978-1-4757-2249-9
  • Series Print ISSN 0072-7830
  • Buy this book on publisher's site
Industry Sectors
Pharma
Finance, Business & Banking
Telecommunications
Aerospace