Advertisement

Functional Differential Equations

  • Jack K. Hale

Part of the Applied Mathematical Sciences book series (AMS, volume 3)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Jack K. Hale
    Pages 1-10
  3. Jack K. Hale
    Pages 11-12
  4. Jack K. Hale
    Pages 13-15
  5. Jack K. Hale
    Pages 16-20
  6. Jack K. Hale
    Pages 21-23
  7. Jack K. Hale
    Pages 24-29
  8. Jack K. Hale
    Pages 30-31
  9. Jack K. Hale
    Pages 32-42
  10. Jack K. Hale
    Pages 43-46
  11. Jack K. Hale
    Pages 47-50
  12. Jack K. Hale
    Pages 65-68
  13. Jack K. Hale
    Pages 69-71
  14. Jack K. Hale
    Pages 72-77
  15. Jack K. Hale
    Pages 78-79
  16. Jack K. Hale
    Pages 80-87
  17. Jack K. Hale
    Pages 91-93
  18. Jack K. Hale
    Pages 104-111
  19. Jack K. Hale
    Pages 112-115
  20. Jack K. Hale
    Pages 116-119
  21. Jack K. Hale
    Pages 125-130
  22. Jack K. Hale
    Pages 131-141
  23. Jack K. Hale
    Pages 142-151
  24. Jack K. Hale
    Pages 182-186
  25. Jack K. Hale
    Pages 187-195
  26. Jack K. Hale
    Pages 196-202
  27. Jack K. Hale
    Pages 203-212
  28. Jack K. Hale
    Pages 213-220
  29. Jack K. Hale
    Pages 221-226
  30. Back Matter
    Pages 227-239

About this book

Introduction

It is hoped that these notes will serve as an introduction to the subject of functional differential equations. The topics are very selective and represent only one particular viewpoint. Complementary material dealing with extensions of closely related topics are given in the notes at the end. A short bibliography is appended as source material for further study. The author is very grateful to the Mathematics Department at UCLA for having extended the invitation to give a series of lectures on functional differ­ ential equations during the Applied Mathematics Year, 1968-1969. The extreme interest and sincere criticism of the members of the audience were a constant source of inspiration in the preparation of the lectures as well as the notes. Except for Sections 6, 32, 33, 34 and some other minor modifications, the notes represent the material covered in two quarters at UCLA. The author wishes to thank Katherine McDougall and Sandra Spinacci for their excellent preparation of the text. The author is also indebted to Eleanor Addison for her work on the drawings and to Dr. H. T. Banks for his careful proofreading of this material. Jack K. Hale Providence March 4, 1971 v TABLE OF CONTENTS 1. INTRODUCTION •••••.•..••.•••••••••.•••..•.••••••.••••••.••.••.•••.••• 1 2 • A GENERAL INITIAL VALUE PROBLEM 11 3 • EXISTENCE 13 4. CONTINUATION OF SOLUTIONS 16 CONTINUOUS DEPENDENCE AND UNIQUENESS 21 5.

Keywords

Boundary value problem Eigenvalue differential equation functional equation stability

Authors and affiliations

  • Jack K. Hale
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4615-9968-5
  • Copyright Information Springer-Verlag New York 1971
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-387-90023-0
  • Online ISBN 978-1-4615-9968-5
  • Series Print ISSN 0066-5452
  • Buy this book on publisher's site
Industry Sectors
Pharma
Finance, Business & Banking
Electronics
Aerospace
Oil, Gas & Geosciences