Skip to main content

The TSQL2 Temporal Query Language

  • Book
  • © 1995

Overview

Part of the book series: The Springer International Series in Engineering and Computer Science (SECS, volume 330)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (38 chapters)

  1. Overview

  2. Language Design

Keywords

About this book

Temporal databases have been an active research topic for at least fifteen years. During this time, several dozen temporal query languages have been proposed. Many within the temporal database research community perceived that the time had come to consolidate approaches to temporal data models and calculus­ based query languages, to achieve a consensus query language and associated data model upon which future research can be based. While there were many query language proposals, with a diversity of language and modeling constructs, common themes kept resurfacing. However, the community was quite frag­ mented, with each research project being based on a particular and different set of assumptions and approaches. Often these assumptions were not germane to the research per se, but were made simply because the research required a data model or query language with certain characteristics, with the partic­ ular one chosen rather arbitrarily. It would be better in such circumstances for research projects to choose the same language. Unfortunately, no existing language had attracted a following large enough to become the one of choice. In April, 1992 Richard Snodgrass circulated a white paper that proposed that a temporal extension to SQL be produced by the research community. Shortly thereafter, the temporal database community organized the "ARPA/NSF In­ ternational Workshop on an Infrastructure for Temporal Databases," which was held in Arlington, TX, in June, 1993.

Editors and Affiliations

  • Department of Computer Science, University of Arizona, Tucson, USA

    Richard T. Snodgrass

Bibliographic Information

Publish with us