Advertisement

Exploration of Visual Data

  • Xiang Sean Zhou
  • Yong Rui
  • Thomas S. Huang

Part of the The Springer International Series in Video Computing book series (VICO, volume 7)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 1-4
  3. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 5-13
  4. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 15-37
  5. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 39-52
  6. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 53-73
  7. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 75-95
  8. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 97-148
  9. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 149-162
  10. Xiang Sean Zhou, Yong Rui, Thomas S. Huang
    Pages 163-165
  11. Back Matter
    Pages 167-187

About this book

Introduction

Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The main objective is to bridge the semantic gap between high-level concepts in the human mind and low-level features extractable by the machines.

The two key issues emphasized are "content-awareness" and "user-in-the-loop". The authors provide a comprehensive review on algorithms for visual feature extraction based on color, texture, shape, and structure, and techniques for incorporating such information to aid browsing, exploration, search, and streaming of image and video data. They also discuss issues related to the mixed use of textual and low-level visual features to facilitate more effective access of multimedia data.

Exploration of Visual Data provides state-of-the-art materials on the topics of content-based description of visual data, content-based low-bitrate video streaming, and latest asymmetric and nonlinear relevance feedback algorithms, which to date are unpublished.

Keywords

Boosting Computer Vision Image segmentation Information Layout Multimedia Textur algorithms classification information system learning machine learning modeling

Authors and affiliations

  • Xiang Sean Zhou
    • 1
  • Yong Rui
    • 2
  • Thomas S. Huang
    • 3
  1. 1.Siemens CorporationPrincetonUSA
  2. 2.Microsoft ResearchRedmondUSA
  3. 3.University of Illinois at Urbana-ChampaignUrbanaUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4615-0497-9
  • Copyright Information Kluwer Academic Publishers 2003
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4613-5106-1
  • Online ISBN 978-1-4615-0497-9
  • Series Print ISSN 1571-5205
  • Buy this book on publisher's site
Industry Sectors
Pharma
Materials & Steel
Automotive
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Consumer Packaged Goods
Energy, Utilities & Environment
Aerospace
Engineering