Skip to main content
Book cover

Photonic Slot Routing in Optical Transport Networks

  • Book
  • © 2003

Overview

Part of the book series: Broadband Networks and Services (BBNS, volume 4)

  • 684 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

All-optical networking is generally believed to be the only solution for coping with the ever-increasing demands in bandwidth, such as the World Wide Web application.
Optical backbone networks efficiently achieve a high level of traffic aggregation by multiplexing numerous users on circuit-switched wavelength paths - the so-called wavelength routing approach. In contrast, the reduced level of traffic aggregation in access and metro networks makes wavelength routing solutions not adequate. In these network areas, packet-interleaved optical time-division multiplexing with its finer and more dynamic bandwidth allocation is advocated.
The book presents such an approach, known as photonic slot routing. It illustrates how this approach may provide a cost-effective solution to deploying all-optical transport networks, using today's optical device technology. To that end, the author combines DWDM-technology with fixed slot optical switching, and gives a comprehensive description of this approach in which slots are aligned across the wavelengths to form groups of data-flows that propagate as a whole inside the network. Operating algorithms are developed, and network performance is analyzed, both by means of theoretical analysis and many simulations of sample networks.
This work will be of particular interest to researchers and professionals who are active in photonic networking.

Authors and Affiliations

  • National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Gosse Wedzinga

Bibliographic Information

Publish with us