Skip to main content

Brain Theory From A Circuits And Systems Perspective

How Electrical Science Explains Neuro-circuits, Neuro-systems, and Qubits

  • Book
  • © 2013

Overview

  • Includes clear explanations of neural pulses with reference to physical circuitry
  • Easy exercises are provided at the ends of each chapter for serious readers who want to really understand the material being offered
  • Educationally valuable laboratory experiments in the form of simulations of neural properties are offered in an appendix
  • High level relevance to artificial intelligence and robotics?
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Series in Cognitive and Neural Systems (SSCNS, volume 6)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

This book models  an idealized neuron as being driven by basic electrical elements, the goal being to systematically characterize the logical properties of neural pulses.  In order to constitute a system, neurons as pulsating devices may be represented using novel circuit elements as delineated in this book.  A plausible brain system is implied by the delineated elements and logically follows from known and likely properties of a neuron.   New to electrical science are novel pulse-related circuit elements involving recursive neurons.  A recursive neuron, when properly excited, produces a self-sustaining pulse train that when sampled,  provides a true output with a specified probability, and a false output with complementary probability.  Because of its similarity to the qubits of quantum mechanics, the recursive pulsating neuron is termed a simulated qubit.  Recursive neurons easily function as controlled toggle devices and so are capable of massively parallel calculations, this being a new dimension in brain functioning as described in this book.    Simulated qubits and their possibilities are compared to the qubits of quantum physics.  Included in the book are suggested neural circuits for associative memory search via a randomized process of cue selection, and neural circuits for priority calculations.  These serve to select returns from long term memory, which in turn determines one's next conscious thought or action based on past memorized experiences.   The book reports on proposals involving electron tunneling between synapses, and quantum computations within neurons.  Although not a textbook, there are easy exercises at the ends of chapters, and in the appendix there are twelve simulation experiments concerning neurons. ​

Authors and Affiliations

  • Veneta, USA

    John Robert Burger

Bibliographic Information

Publish with us