Introduction to Spectral Theory With Applications to Schrödinger Operators Authors (view affiliations) P. D. HislopI. M. Sigal Book 92 Citations 39 Readers 14k Downloads Part of the Applied Mathematical Sciences book series (AMS, volume 113)
Chapters Table of contents (23 chapters) About About this book Table of contents Page 1 Navigate to page number of 2 Next Navigate to page number Search within book Front Matter Pages i-8 PDF The Spectrum of Linear Operators and Hilbert Spaces P. D. Hislop, I. M. Sigal Pages 9-15 The Geometry of a Hilbert Space and Its Subspaces P. D. Hislop, I. M. Sigal Pages 17-25 Exponential Decay of Eigenfunctions P. D. Hislop, I. M. Sigal Pages 27-37 Operators on Hilbert Spaces P. D. Hislop, I. M. Sigal Pages 39-47 Self-Adjoint Operators P. D. Hislop, I. M. Sigal Pages 49-57 Riesz Projections and Isolated Points of the Spectrum P. D. Hislop, I. M. Sigal Pages 59-68 The Essential Spectrum: Weyl’s Criterion P. D. Hislop, I. M. Sigal Pages 69-75 Self-Adjointness: Part 1. The Kato Inequality P. D. Hislop, I. M. Sigal Pages 77-87 Compact Operators P. D. Hislop, I. M. Sigal Pages 89-98 Locally Compact Operators and Their Application to Schrödinger Operators P. D. Hislop, I. M. Sigal Pages 99-107 Semiclassical Analysis of Schrödinger Operators I: The Harmonic Approximation P. D. Hislop, I. M. Sigal Pages 109-117 Semiclassical Analysis of Schrödinger Operators II: The Splitting of Eigenvalues P. D. Hislop, I. M. Sigal Pages 119-129 Self-Adjointness: Part 2. The Kato-Rellich Theorem P. D. Hislop, I. M. Sigal Pages 131-138 Relatively Compact Operators and the Weyl Theorem P. D. Hislop, I. M. Sigal Pages 139-147 Perturbation Theory: Relatively Bounded Perturbations P. D. Hislop, I. M. Sigal Pages 149-159 Theory of Quantum Resonances I: The Aguilar-Balslev-Combes-Simon Theorem P. D. Hislop, I. M. Sigal Pages 161-175 Spectral Deformation Theory P. D. Hislop, I. M. Sigal Pages 177-186 Spectral Deformation of Schrödinger Operators P. D. Hislop, I. M. Sigal Pages 187-196 The General Theory of Spectral Stability P. D. Hislop, I. M. Sigal Pages 197-214 Page 1 Navigate to page number of 2 Next About this book Keywords Fourier transform Hilbert space Operator Sobolev space Topologie calculus convolution geometry model Authors and affiliations P. D. Hislop1I. M. Sigal21.Department of MathematicsUniversity of Kentucky LexingtonUSA2.Department of MathematicsUniversity of TorontoTorontoCanada Bibliographic information DOI https://doi.org/10.1007/978-1-4612-0741-2 Copyright Information Springer Science+Business Media New York 1996 Publisher Name Springer, New York, NY eBook Packages Springer Book Archive Print ISBN 978-1-4612-6888-8 Online ISBN 978-1-4612-0741-2 Series Print ISSN 0066-5452 About this book Industry Sectors Automotive Chemical Manufacturing Biotechnology Electronics Telecommunications Consumer Packaged Goods Energy, Utilities & Environment Aerospace Oil, Gas & Geosciences Buy options