Advertisement

Markov Models for Pattern Recognition

From Theory to Applications

  • Gernot A.¬†Fink

Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. Gernot A. Fink
    Pages 1-7
  3. Gernot A. Fink
    Pages 9-29
  4. Theory

    1. Front Matter
      Pages 31-33
    2. Gernot A. Fink
      Pages 35-49
    3. Gernot A. Fink
      Pages 51-69
    4. Gernot A. Fink
      Pages 71-106
    5. Gernot A. Fink
      Pages 107-127
  5. Practice

    1. Front Matter
      Pages 129-132
    2. Gernot A. Fink
      Pages 133-141
    3. Gernot A. Fink
      Pages 143-152
    4. Gernot A. Fink
      Pages 153-182
    5. Gernot A. Fink
      Pages 183-200
    6. Gernot A. Fink
      Pages 201-209
    7. Gernot A. Fink
      Pages 211-224
  6. Systems

    1. Front Matter
      Pages 225-228
    2. Gernot A. Fink
      Pages 229-236
    3. Gernot A. Fink
      Pages 237-248
    4. Gernot A. Fink
      Pages 249-253
  7. Back Matter
    Pages 255-276

About this book

Introduction

Markov models are extremely useful as a general, widely applicable tool for many areas in statistical pattern recognition.

This unique text/reference places the formalism of Markov chain and hidden Markov models at the very center of its examination of current pattern recognition systems, demonstrating how the models can be used in a range of different applications. Thoroughly revised and expanded, this new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure, and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions.

Topics and features:

  • Introduces the formal framework for Markov models, describing hidden Markov models and Markov chain models, also known as n-gram models
  • Covers the robust handling of probability quantities, which are omnipresent when dealing with these statistical methods
  • Presents methods for the configuration of hidden Markov models for specific application areas, explaining the estimation of the model parameters
  • Describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks
  • Examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models
  • Reviews key applications of Markov models in automatic speech recognition, character and handwriting recognition, and the analysis of biological sequences

Researchers, practitioners, and graduate students of pattern recognition will all find this book to be invaluable in aiding their understanding of the application of statistical methods in this area.

Keywords

Handwriting Recognition Markov-Models Pattern Recognition Speech Recognition

Authors and affiliations

  • Gernot A.¬†Fink
    • 1
  1. 1.Department of Computer ScienceTechnical University of DortmundDortmundGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4471-6308-4
  • Copyright Information Springer-Verlag London 2014
  • Publisher Name Springer, London
  • eBook Packages Computer Science
  • Print ISBN 978-1-4471-6307-7
  • Online ISBN 978-1-4471-6308-4
  • Series Print ISSN 2191-6586
  • Series Online ISSN 2191-6594
  • Buy this book on publisher's site
Industry Sectors
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Energy, Utilities & Environment
Aerospace
Engineering