Skip to main content
Book cover

Robust Control

Systems with Uncertain Physical Parameters

  • Book
  • © 1993

Overview

Part of the book series: Communications and Control Engineering (CCE)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

  1. Introduction to Some Practical Problems of Robust Control

  2. Stability Analysis of Polynomial Families

  3. Robustness Analysis of Feedback Systems

  4. Some Design Tools for Robust Control Systems

Keywords

About this book

Many plants have large variations in operating conditions. To ensure smooth running it is essential to find a simple fixed gain controller that guarantees rapidly decaying and well-damped transients for all admissible operating conditions. Robust Control presents design tools, developed by the authors, for the solution of this design problem. Examples of simple and complex cases such as a crane, a flight control problem and the automatic and active four-wheel steering of a car illustrate the use of these tools. This book is intended for anyone who has taken an undergraduate course in feedback control systems and who seeks an advanced treatment of robust control with applications. Drawing on the resources and authoritative research of a leading aerospace institute, it will mainly be of interest to mechanical and electrical engineers in universities, institutes and industrial research centres.

Reviews

"...the authors have succeeded in bringing together the fundamental principles which are of major importance for the ability to follow the development of the subject. They have to be commended for this excellent work." IEEE Transactions on Automatic Control

Authors and Affiliations

  • Institute for Robotics and System Dynamics Oberpfaffenhofen, Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR), Wessling/Obb, Germany

    Jürgen Ackermann, Dieter Kaesbauer, Wolfgang Sienel, Reinhold Steinhauser

  • Electrical and Computer Engineering Department, University of Michigan-Dearborn, USA

    Andrew Bartlett

About the authors

Jürgen Ackermann studied Control Engineering under the guidance of Prof. Oppelt in Darmstadt, and Control Theory under the guidance of Prof. Jury in Berkeley, California. He is well known for his contributions to the theory of control systems, as treated in his books on sampled-data [7] and robust control systems [10]. Perhaps his best known result is Ackermann´s formula for pole placement [38].

J. Ackermann has a long association with DLR, the German Aerospace Center in Oberpfaffenhofen, Germany, where he was director of the Institute of Robotics and Mechatronics from 1974 to his retirement in 2001. He has attracted to the institute and supported such well known members of the international control and dynamics community as G. Hirzinger, W. Kortüm, G. Grübel, R. Schwertassek, K. Well (now Stuttgart) and G. Kreisselmeier (now Kassel). Together with them he has initiated and guided many applied research projects which include robust autopilots and jet engine control systems for aircraft; trajectory optimization of aircraft, missiles and spacecraft; control of large flexible structures; robotics for space and manufacturing application, modelling and control of trains, maglev vehicles and automobiles.

He has developed a general theory of robust control for steering of vehicles. It is based on robust triangular decoupling of steering of a point mass along a desired trajectory and automatic control of undesired vehicle rotations. J. Ackermann holds six patents for robust feedback control strategies to increase the safety of car driving [1-6]. He initiated an experimental program with BMW, which has shown spectacular safety advantages in road tests with side-wind and mu-split braking [110]. The concept was transferred to flight control [146] where it resulted in a remarkable weight reduction. In both cases the advantages resulted from the fact, that an automatic control system can compensate strong disturbance torques faster than the driver orpilot.

J. Ackermann was a Member of the IFAC Council (1990-1996), where he initiated the creation of a new Technical Committee on Automotive Control. He is a founding member of the European Union Control Association and was a member of the IEEE-CSS Board of Governors (1993-1995) and of the "Beirat" of GMR (the German IFAC-NMO). He served on the Editorial Boards of Automatica, IEEE Transactions on Automatic Control (as Associate Editor at Large), C-TAT, Robust and Nonlinear Control, Automatisierungstechnik and was Guest Editor for special issues on "Robust Control" and "Automotive Control". He was chairman of the IPC for the 1989 IEEE International Conference on Control and Applications (Jerusalem), and chaired an IEEE Award Committee, the IFAC Nichols medal committee and the Theory Committee of GMR. He was also a Member of the Senate of the DLR (1986-1998) and of the Advisory Board of the "Deutsches Museum" in Munich (1986-1998). From 1988 to 1995 he was elected chief reviewer for Control Engineering for the Deutsche Forschungsgemeinschaft. Presently he is chairman of the IFAC awards committee for the Nichols medal.

J. Ackermann received the J. M. Boykow-Award (1970), the VDE Best Publication Award (1973), he is an Otto-Lilienthal-Fellow (1989) and an IEEE-Fellow (1992), he is recipient of the first Nichols medal of IFAC "for robust control design methods and their use to improve automobile safety" (1996). Also in 1996 he received the Bode Prize of IEEE. In 2005 he was appointed IFAC Fellow "for outstanding and extraordinary contributions to the field of automatic control and involvement in IFAC activities in the promotion of the field". He is adjunct professor at the Technical University Munich and has held visiting appointments at Urbana-Champaign, Canberra, Irvine, Berkeley and Stanford. He was invited for numerous plenary keynote lectures at international conferences [11-26].

Bibliographic Information

Publish with us