Advertisement

Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence

6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13–15, 2001 Proceedings, Part 1

  • José Mira
  • Alberto Prieto

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2084)

Table of contents

  1. Front Matter
    Pages I-XXVII
  2. Foundations of Connectionism and Biophysical Models of Neurons

    1. O. Herreras, J. M. Ibarz, L. López-Aguado, P. Varona
      Pages 1-13
    2. Eduardo Sroseanchez, Senrosesen Barro, Jorge Mariño, Antonio Canedo
      Pages 21-29
    3. Josrosee Mira, Ana E. Delgado
      Pages 38-46
    4. Jianfeng Fent
      Pages 47-54
    5. J. M. Ferrández, M. Bongard, F. García de Quiros, J. A. Bolea, J. Ammermü, R. A. Normann et al.
      Pages 55-62
    6. Reza Rajimehr, Leila Montaser Kouhsari
      Pages 72-80
    7. Santi Chillemi, Michele Barbi, Angelo Di Garbo
      Pages 87-94
    8. Tino Lourens, Hiroshi G. Okuno, Hiroaki Kitano
      Pages 95-107
    9. Ernesto Pereda, Joydeep Bhattacharya
      Pages 108-116
  3. Structural and Functional Models of Neurons

    1. Pedro Rodrigues, J. Félix Costa, Hava T. Siegelmann
      Pages 158-165
    2. J. Andrés Berzal, Pedro J. Zufiria
      Pages 166-173
    3. Flávio J. de Souza, Marley Maria R. Vellasco, Marco Aurélio C. Pacheco
      Pages 174-183
    4. J. Barahona da Fonseca, I. Barahona da Fonseca, C. P. Suárez Araujo, J. Simões da Fonseca
      Pages 184-195
    5. Tai-Wen Yue, Suchen Chiang
      Pages 196-206
    6. J. Santos, R. J. Duro
      Pages 207-214
    7. J. David Buldain
      Pages 223-234
    8. Naoyuki Tsuruta, Yuichiro Yoshiki, Tarek El. Tobely
      Pages 235-242
    9. Sergio Negri, Lluís A. Belanche
      Pages 243-252
    10. A. Blanco, M. Delgado, M. C. Pegalajar, I. Requena
      Pages 285-292
    11. Enrique Castillo, Oscar Fontenla-Romero, Bertha Guijarro-Berdiñas, Amparo Alonso-Betanzos
      Pages 293-300
    12. Oscar Fontenla Romero, Bertha Guijarro Berdiñas, Amparo Alonso Betanzos
      Pages 301-307
    13. Enrique Castillo, Ali S. Hadi, Beatriz Lacruz
      Pages 316-324
  4. Learning and Other Plasticity Phenomena, and Complex Systems Dynamics

    1. Shun-ichi Amari, Tomoko Ozeki, Hyeyoung Park
      Pages 325-332
    2. Vladimir Chinarov, Michael Menzinger
      Pages 333-338
    3. S. Snyders, C. W. Omlin
      Pages 339-346
    4. Marcelino Lázaro, Ignacio Santamaría, Carlos Pantaleón
      Pages 347-354
    5. J. A. Gomez-Ruiz, J. Muñoz-Perez, E. Lopez-Rubio, M. A. Garcia-Bernal
      Pages 355-362
    6. Hiroyuki Okada, Hiroshi Yamakawa, Takashi Omori
      Pages 370-377
    7. Hiroshi Yamakawa, Yuji Miyamoto, Hiroyuki Okada
      Pages 378-385
    8. Ganesh Arulampalam, Abdesselam Bouzerdoum
      Pages 410-417
    9. Jianfeng Feng
      Pages 418-426

Other volumes

  1. Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence
    6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13–15, 2001 Proceedings, Part 1
  2. 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13–15, 2001 Proceedings, Part II

About these proceedings

Introduction

Underlying most of the IWANN calls for papers is the aim to reassume some of the motivations of the groundwork stages of biocybernetics and the later bionics formulations and to try to reconsider the present value of two basic questions. The?rstoneis:“Whatdoesneurosciencebringintocomputation(thenew bionics)?” That is to say, how can we seek inspiration in biology? Titles such as “computational intelligence”, “arti?cial neural nets”, “genetic algorithms”, “evolutionary hardware”, “evolutive architectures”, “embryonics”, “sensory n- romorphic systems”, and “emotional robotics” are representatives of the present interest in “biological electronics” (bionics). Thesecondquestionis:“Whatcanreturncomputationtoneuroscience(the new neurocybernetics)?” That is to say, how can mathematics, electronics, c- puter science, and arti?cial intelligence help the neurobiologists to improve their experimental data modeling and to move a step forward towards the understa- ing of the nervous system? Relevant here are the general philosophy of the IWANN conferences, the sustained interdisciplinary approach, and the global strategy, again and again to bring together physiologists and computer experts to consider the common and pertinent questions and the shared methods to answer these questions.

Keywords

Connectionism Simulation algorithmic learning artificial neural networks biocomputing brain-like computations evolutionary algorithms genetic algorithms heuristics knowledge multi-objective optimization neurons reinforcement learning robot statistics

Editors and affiliations

  • José Mira
    • 1
  • Alberto Prieto
    • 2
  1. 1.Departamento de Inteligencia Artificial Sanda del ReyUniversidad Nacional de Educación a DistanciaMadridSpain
  2. 2.Departamento de Arquitectura y Tecnología de ComputadoresUniversidad de GranadaGranadaSpain

Bibliographic information

  • DOI https://doi.org/10.1007/3-540-45720-8
  • Copyright Information Springer-Verlag Berlin Heidelberg 2001
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-42235-8
  • Online ISBN 978-3-540-45720-6
  • Series Print ISSN 0302-9743
  • Buy this book on publisher's site
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Energy, Utilities & Environment
Aerospace
Engineering