© 2003

Introduction to Applied Nonlinear Dynamical Systems and Chaos


Part of the Texts in Applied Mathematics book series (TAM, volume 2)

Table of contents

About this book


This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics.

This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view.


Dynamical system artificial intelligence chaos dynamical systems dynamische Systeme nonlinear dynamics stability

Authors and affiliations

  1. 1.School of MathematicsUniversity of BristolClifton, BristolUK

Bibliographic information

Industry Sectors
Energy, Utilities & Environment
Finance, Business & Banking


From the reviews of the second edition:

"This is a very substantial revision of the author’s original textbook published in 1990. It does not only contain much new material, for instance on invariant manifold theory and normal forms, it has also been restructured. … The presentation is intended for advanced undergraduates … . This second edition … will serve as one of the most eminent introductions to the geometric theory of dynamical systems." (R. Bürger, Monatshefte für Mathematik, Vol. 145 (4), 2005)

"This is an extensively rewritten version of the first edition which appeared in 1990, taking into account the many changes in the subject during the intervening time period. … The book is suitable for use as a textbook for graduate courses in applied mathematics or cognate fields. It is written in a readable style, with considerable motivation and many insightful examples. … Overall, the book provides a very accessible, up-to-date and comprehensive introduction to applied dynamical systems." (P.E. Kloeden, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 85 (1), 2005)

"The second edition of this popular text … is an encyclopedic introduction to dynamical systems theory and applications that includes substantial revisions and new material. It should be on the reading list of every student of the subject … . Also, the new organization makes the book more suitable as a textbook that can be used in graduate courses. This book will also be a useful reference for applied scientists … as well as a guide to the literature." (Carmen Chicone, Mathematical Reviews, 2004h)

"This volume includes a significant amount of new material. … Each chapter starts with a narrative … and ends with a large collection of excellent exercises. … An extensive bibliography … provide a useful guide for future study. … This is a highly recommended book for advanced undergraduate and first-year graduate students. It contains most of the necessary mathematical tools … to apply the results of the subject to problems in the physical and engineering sciences." (Tibor Krisztin, Acta Scientiarum Mathematicarum, Vol. 75, 2009)

“It is certainly one of the most complete introductory textbooks about dynamical systems, though no single book can be really complete. … Some chapters can certainly be used as a course text for a master’s course, but the whole book is to thick for a single course. … a suitable first text for Ph.D. students who want to do research in dynamical systems, and a useful reference work for more experienced people. I definitely enjoyed reading this book and can only recommend it.” (Kurt Lust, Bulletin of the Belgian Mathematical Society, Vol. 15 (1), 2008)