Advertisement

K3 Projective Models in Scrolls

  • Authors
  • Trygve Johnsen
  • Andreas Leopold Knutsen

Part of the Lecture Notes in Mathematics book series (LNM, volume 1842)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 1-14
  3. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 15-18
  4. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 31-33
  5. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 35-45
  6. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 47-57
  7. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 59-61
  8. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 63-98
  9. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 121-128
  10. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 129-154
  11. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 155-158
  12. Trygve Johnsen, Andreas Leopold Knutsen
    Pages 159-162
  13. Back Matter
    Pages 163-164

About this book

Introduction

The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads to a classification of K3 surfaces in projective spaces of dimension at most 10. The authors bring further the ideas in Saint-Donat's classical article from 1974, lifting results from canonical curves to K3 surfaces and incorporating much of the Brill-Noether theory of curves and theory of syzygies developed in the mean time.

Keywords

Clifford index of curves Dimension K3 surfaces projective models rational normal scrolls syzygies

Bibliographic information

  • DOI https://doi.org/10.1007/b97183
  • Copyright Information Springer-Verlag Berlin Heidelberg 2004
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-21505-9
  • Online ISBN 978-3-540-40898-7
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site