Advertisement

© 2005

Geometric Methods in Algebra and Number Theory

  • Fedor Bogomolov
  • Yuri Tschinkel
Textbook

Part of the Progress in Mathematics book series (PM, volume 235)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Ingrid Bauer, Fabrizio Catanese, Fritz Grunewald
    Pages 1-42
  3. Fedor Bogomolov, Yuri Tschinkel
    Pages 43-57
  4. Nero Budur
    Pages 59-70
  5. Ching-Li Chai
    Pages 71-107
  6. Raf Cluckers, François Loeser
    Pages 109-137
  7. Corrado De Concini, Claudio Procesi
    Pages 139-149
  8. Markus Spitzweck
    Pages 283-302
  9. Peter Swinnerton-Dyer
    Pages 303-309
  10. Harry Tamvakis
    Pages 311-338

About this book

Keywords

Area Cohomology Volume algebra moduli space number theory

Editors and affiliations

  • Fedor Bogomolov
    • 1
  • Yuri Tschinkel
    • 2
  1. 1.Department of Mathematics Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Bibliographic information

  • Book Title Geometric Methods in Algebra and Number Theory
  • Editors Fedor Bogomolov
    Yuri Tschinkel
  • Series Title Progress in Mathematics
  • Series Abbreviated Title Progress in Mathematics(Birkhäuser)
  • DOI https://doi.org/10.1007/b138649
  • Copyright Information Birkhäuser Boston 2005
  • Publisher Name Birkhäuser Boston
  • eBook Packages Mathematics and Statistics Mathematics and Statistics (R0)
  • Hardcover ISBN 978-0-8176-4349-2
  • eBook ISBN 978-0-8176-4417-8
  • Series ISSN 0743-1643
  • Series E-ISSN 2296-505X
  • Edition Number 1
  • Number of Pages VIII, 362
  • Number of Illustrations 6 b/w illustrations, 0 illustrations in colour
  • Topics Algebra
    Algebraic Geometry
    Number Theory
    Geometry
  • Buy this book on publisher's site

Reviews

From the reviews:

“This is a collection of articles on algebraic and arithmetic geometry most of which were presented at a conference that took place in Miami in December 2003. … this volume will be attractive for researchers and graduate students in arithmetic geometry. The surveys provided can serve as an introduction for them and offer guidance for further study.” (Ch. Baxa, Monatshefte für Mathematik, Vol. 152 (1), September, 2007)