Mechanics of Material Forces

  • Paul Steinmann
  • Gérard A. Maugin

Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 11)

Table of contents

  1. Front Matter
    Pages i-xv
  2. 4d Formalism

    1. George Herrmann, Reinhold Kienzler
      Pages 1-11
    2. Gérard A. Maugin
      Pages 13-22
  3. Evolving Interfaces

    1. Eliot Fried, Morton E. Gurtin
      Pages 25-32
    2. Alexandre Danescu
      Pages 33-41
    3. Lev Truskinovsky, Anna Vainchtein
      Pages 43-50
  4. Growth & Biomechanics

    1. Antonio DiCarlo
      Pages 53-64
    2. Krishna Garikipati, Harish Narayanan, Ellen M. Arruda, Karl Grosh, Sarah Calve
      Pages 77-84
  5. Numerical Aspects

    1. Ralf Denzer, Tina Liebe, Ellen Kuhl, Franz Josef Barth, Paul Steinmann
      Pages 95-104
    2. Ralf Mueller, Dietmar Gross
      Pages 105-114
  6. Dislocations & Peach-Koehler-Forces

  7. Multiphysics & Microstructure

  8. Fracture & Structural Optimization

    1. Reinhold Kienzler, George Herrmann
      Pages 193-202

About these proceedings

Introduction

In this single volume the reader will find all recent developments in one of the most promising and rapidly expanding branches of continuum mechanics, the mechanics of material forces. The book covers both theoretical and numerical developments. Conceptually speaking, common continuum mechanics in the sense of Newton—which gives rise to the notion of spatial (mechanical) forces—considers the response to variations of spatial placements of "physical particles” with respect to the ambient space, whereas continuum mechanics in the sense of Eshelby—which gives rise to the notion of material (configurational) forces—is concerned with the response to variations of material placements of "physical particles” with respect to the ambient material. Well-known examples of material forces are driving forces on defects like the Peach-Koehler forece, the J-Integral in fracture mechanics, and energy release. The consideration of material forces goes back to the works of Eshelby, who investigated forces on defects; therefore this area of continuum mechanics is sometimes denoted Eshelbian mechanics.

 

Audience

This book is suitable for civil and mechanical engineers, physicists and applied mathematicians.

Keywords

Transformation linear optimization mathematical physics mechanics modeling modelling optimization simulation stability

Editors and affiliations

  • Paul Steinmann
    • 1
  • Gérard A. Maugin
    • 2
  1. 1.University of KaiserslauternGermany
  2. 2.Université Pierre et Marie CurieParisFrance

Bibliographic information

  • DOI https://doi.org/10.1007/b137232
  • Copyright Information Springer Science+Business Media, Inc. 2005
  • Publisher Name Springer, Boston, MA
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-0-387-26260-4
  • Online ISBN 978-0-387-26261-1
  • About this book
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Consumer Packaged Goods
Aerospace
Oil, Gas & Geosciences