Cryocoolers 11

  • R. G. RossJr.

Table of contents

  1. GM Refrigerator Developments

  2. Regenerator Analysis and Materials Developments

    1. Ray Radebaugh, E. D. Marquardt, J. Gary, A. O’Gallagher
      Pages 409-418
    2. M. A. Lewis, R. Radebaugh
      Pages 419-425
    3. L. Tuchinskiy, R. Loutfy, B. J. Tomlinson
      Pages 427-432
    4. K. A. Gschneidner Jr., A. O. Pecharsky, V. K. Pecharsky
      Pages 433-441
    5. H. Nakane, S. Yamazaki, H. Fujishiro, T. Yamaguchi, S. Yoshizawa, T. Numazawa et al.
      Pages 443-448
    6. S. A. Miller, J. D. Nicholson, K. A. Gschneidner Jr., A. O. Pecharsky, V. K. Pecharsky
      Pages 449-455
    7. M. I. Ilyn, A. M. Tishin, K. A. Gschneidner Jr., V. K. Pecharsky, A. O. Pecharsky
      Pages 457-464
    8. T. Numazawa, O. Arai, A. Sato, S. Fujimoto, T. Oodo, Y. M. Rang et al.
      Pages 465-473
    9. A. Kashani, B. P. M. Helvensteijn, P. Kittel, K. A. Gschneidner Jr., V. K. Pecharsky, A. O. Pecharsky
      Pages 475-480
  3. Turbo-Brayton Cryocooler Developments

    1. J. A. McCormick, G. F. Nellis, H. Sixsmith, M. V. Zagarola, J. A. Gibbon, M. G. Izenson et al.
      Pages 481-488
    2. J. J. Breedlove, M. V. Zagarola, G. F. Nellis, J. A. Gibbon, F. X. Dolan, W. L. Swift
      Pages 489-497
    3. P. L. Whitehouse, G. F. Nellis, M. V. Zagarola
      Pages 499-504
  4. J-T and Throttle-Cycle Cryocooler Developments

    1. D. S. Glaister, W. J. Gully, G. P. Wright, D. W. Simmons, B. J. Tomlinson
      Pages 505-511
    2. M. Boiarski, A. Khatri, O. Podtcherniaev, V. Kovalenko
      Pages 513-521
    3. M. Q. Gong, E. C. Luo, J. T. Liang, Y. Zhou, J. F. Wu
      Pages 523-530
  5. Sorption Cryocooler Developments

    1. Christopher G. Paine, Robert C. Bowman Jr, David Pearson, Michael E. Schmelzel, Pradeep Bhandari, Lawrence A. Wade
      Pages 531-540
    2. P. Bhandari, M. Prina, M. Ahart, R. C. Bowman, L. A. Wade
      Pages 541-549
    3. J. F. Burger, H. J. Holland, J. H. Seppenwoolde, E. Berenschot, H. J. M. ter Brake, J. G. E. Gardeniers et al.
      Pages 551-560
  6. Sub-Kelvin Refrigerator Developments

    1. L. Duband
      Pages 561-566
    2. L. Duband, B. Collaudin, P. Jamotton
      Pages 567-576
    3. R. S. Bhatia, J. J. Bock, V. V. Hristov, W. C. Jones, A. E. Lange, J. Leong et al.
      Pages 577-586
    4. P. Shirron, N. Abbondante, E. Canavan, M. Di Pirro, M. Grabowski, M. Hirsch et al.
      Pages 587-595
    5. G. Thummes, M. Theiß, M. B ühler, J. Höhne
      Pages 597-604
  7. Optical Refrigeration Developments

    1. G. Rumbles, B. Heeg, J. L. Lloyd, P. A. De Barber, B. J. Tomlinson
      Pages 621-629
    2. B. C. Edwards, J. E. Anderson, R. I. Epstein, C. W. Hoyt, M. Sheik-Bahae
      Pages 631-636
  8. Cryocooler Reliability Investigations and Analyses

  9. Cryocooler Integration Technologies and Materials

    1. E. D. Marquardt, J. P. Le, Ray Radebaugh
      Pages 681-687
    2. C. H. Yoneshige, N. S. Abhyankar, J. P. Kallman, G. W. Lybarger, M. L. Martin
      Pages 699-705
    3. D. Bugby, B. Marland, C. Stouffer, B. Tomlinson, T. Davis
      Pages 707-717
    4. G. S. Willen, B. J. Tomlinson
      Pages 719-728
    5. B. Marland, D. Bugby, C. Stouffer, B. Tomlinson, T. Davis
      Pages 729-738
    6. G. S. Willen, E. M. Flint
      Pages 739-748
  10. Space Cryocooler Applications

    1. G. S. Mand, J. R. Drummond, D. Henry, J. Hackett
      Pages 759-768
    2. W. Kiehl, D. J. Berry, D. S. Glaister, J. Richards, R. G. Stack
      Pages 769-773
    3. R. L. Oonk, D. S. Glaister, W. J. Gully, M. D. Lieber
      Pages 775-782
  11. Commercial Cryocooler Applications

    1. A. P. Rijpma, M. R. Bangma, H. A. Reincke, E. de Vries, H. J. Holland, H. J. M. ter Brake et al.
      Pages 793-802
    2. E. D. Marquardt, Ray Radebaugh, A. P. Peskin
      Pages 803-807
    3. Salerno L. J., Gaby J., Johnson R., Kittel P., Marquardt E. D.
      Pages 809-816
  12. Back Matter
    Pages 817-825

About this book


Over the last two years we have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. One class of pulse tubes that has reached maturity is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; they generally provide cooling in the 30 to 100 K temperature range and operate at frequencies from 30 to 60 Hz. The other type of pulse tube cooler making great advances is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation to achieve temperatures in the 2 to 10 K temperature range. Nearly a third of this proceedings covers these new developments in the pulse tube arena. Complementing the work on low-temperature pulse tubes is substantial continued progress on rare earth regenerator materials and Gifford-McMahon coolers. These technologies continue to make great progress in opening up the 2 - 4 K market. Also in the commercial sector, continued interest is being shown in the development of long-life, low-cost cryocoolers for the emerging high temperature superconductor electronics market, particularly the cellular telephone base-station market. At higher temperature levels, closed-cycle J-T or throttle-cycle refrigerators are taking advantage of mixed refrigerant gases, spearheaded in the former USSR, to achieve low-cost cr- cooler systems in the 65 - 80 K temperature range.


electronics material refrigeration space

Editors and affiliations

  • R. G. RossJr.
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Bibliographic information

Industry Sectors
Energy, Utilities & Environment