Advertisement

© 1995

Regularity Problem for Quasilinear Elliptic and Parabolic Systems

  • Authors
Book

Part of the Lecture Notes in Mathematics book series (LNM, volume 1614)

About this book

Introduction

The smoothness of solutions for quasilinear systems is one of the most important problems in modern mathematical physics. This book deals with regular or strong solutions for general quasilinear second-order elliptic and parabolic systems. Applications in solid mechanics, hydrodynamics, elasticity and plasticity are described.
The results presented are based on two main ideas: the universal iterative method, and explicit, sometimes sharp, coercivity estimates in weighted spaces. Readers are assumed to have a standard background in analysis and PDEs.

Keywords

Partial differential equations Smooth function differential equation elliptic parabolic system mathematical physics partial differential equation regularity

Bibliographic information

  • Book Title Regularity Problem for Quasilinear Elliptic and Parabolic Systems
  • Authors Alexander Koshelev
  • Series Title Lecture Notes in Mathematics
  • Series Abbreviated Title Lecture Notes in Mathematics
  • DOI https://doi.org/10.1007/BFb0094482
  • Copyright Information Springer-Verlag Berlin Heidelberg 1995
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Softcover ISBN 978-3-540-60251-4
  • eBook ISBN 978-3-540-44772-6
  • Series ISSN 0075-8434
  • Series E-ISSN 1617-9692
  • Edition Number 1
  • Number of Pages XXII, 262
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Analysis
  • Buy this book on publisher's site
Industry Sectors
Aerospace
Finance, Business & Banking
IT & Software