Advertisement

© 1997

Spaces of Homotopy Self-Equivalences

A Survey

  • Authors
Book

Part of the Lecture Notes in Mathematics book series (LNM, volume 1662)

Table of contents

  1. Front Matter
    Pages I-IX
  2. John W. Rutter
    Pages 1-3
  3. John W. Rutter
    Pages 4-6
  4. John W. Rutter
    Pages 7-10
  5. John W. Rutter
    Pages 11-18
  6. John W. Rutter
    Pages 19-27
  7. John W. Rutter
    Pages 28-33
  8. John W. Rutter
    Pages 34-35
  9. John W. Rutter
    Pages 36-39
  10. John W. Rutter
    Pages 40-43
  11. John W. Rutter
    Pages 44-44
  12. John W. Rutter
    Pages 45-53
  13. John W. Rutter
    Pages 54-62
  14. John W. Rutter
    Pages 63-73
  15. John W. Rutter
    Pages 74-79
  16. John W. Rutter
    Pages 80-93
  17. John W. Rutter
    Pages 94-97
  18. John W. Rutter
    Pages 98-107
  19. John W. Rutter
    Pages 108-112
  20. John W. Rutter
    Pages 113-120

About this book

Introduction

This survey covers groups of homotopy self-equivalence classes of topological spaces, and the homotopy type of spaces of homotopy self-equivalences. For manifolds, the full group of equivalences and the mapping class group are compared, as are the corresponding spaces. Included are methods of calculation, numerous calculations, finite generation results, Whitehead torsion and other areas. Some 330 references are given. The book assumes familiarity with cell complexes, homology and homotopy. Graduate students and established researchers can use it for learning, for reference, and to determine the current state of knowledge.

Keywords

Connected space Homotopy Homotopy group homology

Bibliographic information

  • Book Title Spaces of Homotopy Self-Equivalences
  • Book Subtitle A Survey
  • Authors John W. Rutter
  • Series Title Lecture Notes in Mathematics
  • Series Abbreviated Title Lecture Notes in Mathematics
  • DOI https://doi.org/10.1007/BFb0093736
  • Copyright Information Springer-Verlag Berlin Heidelberg 1997
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Softcover ISBN 978-3-540-63103-3
  • eBook ISBN 978-3-540-69135-8
  • Series ISSN 0075-8434
  • Series E-ISSN 1617-9692
  • Edition Number 1
  • Number of Pages X, 170
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Algebraic Topology
  • Buy this book on publisher's site