Advertisement

© 1994

Real and Étale Cohomology

  • Authors
Book

Part of the Lecture Notes in Mathematics book series (LNM, volume 1588)

Table of contents

  1. Front Matter
    Pages I-XXIV
  2. Claus Scheiderer
    Pages 1-8
  3. Claus Scheiderer
    Pages 9-17
  4. Claus Scheiderer
    Pages 18-29
  5. Claus Scheiderer
    Pages 30-41
  6. Claus Scheiderer
    Pages 56-67
  7. Claus Scheiderer
    Pages 107-127
  8. Claus Scheiderer
    Pages 128-160
  9. Claus Scheiderer
    Pages 166-172
  10. Claus Scheiderer
    Pages 173-179
  11. Claus Scheiderer
    Pages 180-190
  12. Claus Scheiderer
    Pages 191-204
  13. Claus Scheiderer
    Pages 205-211
  14. Claus Scheiderer
    Pages 212-218
  15. Claus Scheiderer
    Pages 219-243

About this book

Introduction

This book makes a systematic study of the relations between the étale cohomology of a scheme and the orderings of its residue fields. A major result is that in high degrees, étale cohomology is cohomology of the real spectrum. It also contains new contributions in group cohomology and in topos theory. It is of interest to graduate students and researchers who work in algebraic geometry (not only real) and have some familiarity with the basics of étale cohomology and Grothendieck sites. Independently, it is of interest to people working in the cohomology theory of groups or in topos theory.

Keywords

Cohomology Dimension Grad Grothendieck topology Zariski topology algebraic geometry cohomology theory homology topological group

Bibliographic information

  • Book Title Real and Étale Cohomology
  • Authors Claus Scheiderer
  • Series Title Lecture Notes in Mathematics
  • Series Abbreviated Title Lecture Notes in Mathematics
  • DOI https://doi.org/10.1007/BFb0074269
  • Copyright Information Springer-Verlag Berlin Heidelberg 1994
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Softcover ISBN 978-3-540-58436-0
  • eBook ISBN 978-3-540-48797-5
  • Series ISSN 0075-8434
  • Series E-ISSN 1617-9692
  • Edition Number 1
  • Number of Pages XXIV, 284
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Algebraic Geometry
    K-Theory
    Group Theory and Generalizations
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking