Advertisement

Table of contents

  1. Front Matter
  2. Stéphane Fèvre, Dongming Wang
    Pages 17-32
  3. Thomas Arts, Mads Dam, Lars -åke Fredlund, Dilian Gurov
    Pages 38-41
  4. Rajeev Goré, Joachim Posegga, Andrew Slater, Harald Vogt
    Pages 47-50
  5. Bernhard Beckert, Rajeev Goré
    Pages 51-55
  6. Christoph Benzmüller, Michael Kohlhase
    Pages 56-71
  7. Alexandre Boudet, Evelyne Contejean
    Pages 88-102
  8. Bertrand Mazure, Lakhdar SaÏs, éric Grégoire
    Pages 124-128
  9. Julian Richardson, Alan Smaill, Ian Green
    Pages 129-133
  10. Konrad Slind, Mike Gordon, Richard Boulton, Alan Bundy
    Pages 134-138
  11. Christoph Benzmüller, Michael Kohlhase
    Pages 139-143
  12. Leo Bachmair, Harald Ganzinger
    Pages 160-174
  13. Leo Bachmair, Harald Ganzinger, Andrei Voronkov
    Pages 175-190
  14. Matt Kaufmann
    Pages 220-238
  15. Alberto Oliart, Wayne Snyder
    Pages 239-253
  16. Jürgen Brauburger, Jürgen Giesl
    Pages 254-269
  17. Carsten Schürmann, Frank Pfenning
    Pages 286-300
  18. Christoph Kreitz, Mark Hayden, Jason Hickey
    Pages 317-332
  19. Yoshihiko Ohta, Katsumi Inoue, Ryuzo Hasegawa
    Pages 333-348
  20. Laurent Théry
    Pages 349-364
  21. Matthew Bishop, Peter B. Andrews
    Pages 365-380
  22. Reinhold Letz
    Pages 381-396
  23. Andreas Nonnengart, Georg Rock, Christoph Weidenbach
    Pages 397-411
  24. J. D. Horton, Bruce Spencer
    Pages 412-426
  25. Tanel Tammet
    Pages 427-441
  26. Back Matter

About these proceedings

Introduction

This book constitutes the refereed proceedings of the 15th International Conference on Automated Deduction, CADE-15, held in Lindau, Germany, in July 1998.
The volume presents three invited contributions together with 25 revised full papers and 10 revised system descriptions; these were selected from a total of 120 submissions. The papers address all current issues in automated deduction and theorem proving based on resolution, superposition, model generation and elimination, or connection tableau calculus, in first-order, higher-order, intuitionistic, or modal logics, and describe applications to geometry, computer algebra, or reactive systems.

Keywords

Automated Reasoning Erfüllbarkeitsproblem der Aussagenlogik Formal Verification Linear Logic Nonclassical Logics Resolution Theorem Proving algorithm algorithms automated deduction automated theorem proving communication logic proving verification

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0054239
  • Copyright Information Springer-Verlag Berlin Heidelberg 1998
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-64675-4
  • Online ISBN 978-3-540-69110-5
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Energy, Utilities & Environment
Aerospace
Engineering