## About this book

### Introduction

This monograph gives a detailed introductory exposition of research results for various models, mostly two-dimensional, of directed walks, interfaces, wetting, surface adsorption (of polymers), stacks, compact clusters (lattice animals), etc. The unifying feature of these models is that in most cases they can be solved analytically. The methods used include transfer matrices, generating functions, recurrence relations, and difference equations, and in some cases involve utilization of less familiar mathematical techniques such as continued fractions and q-series. The authors emphasize an overall view of what can be learned generally of the statistical mechanics of anisotropic systems, including phenomena near surfaces, by studying the solvable models. Thus, the concept of scaling and, where known, finite-size scaling properties are elucidated. Scaling and statistical mechanics of anisoptropic systems in general are active research topics. The volume provides a comprehensive survey of exact model results in this field.

### Keywords

Sorption adsorption animals cluster mechanics polymer statistical mechanics

### Bibliographic information