Advertisement

Network Intrusion Detection using Deep Learning

A Feature Learning Approach

  • Kwangjo Kim
  • Muhamad Erza Aminanto
  • Harry Chandra Tanuwidjaja

Part of the SpringerBriefs on Cyber Security Systems and Networks book series (BRIEFSCSSN)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja
    Pages 1-4
  3. Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja
    Pages 5-11
  4. Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja
    Pages 13-26
  5. Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja
    Pages 27-34
  6. Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja
    Pages 35-45
  7. Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja
    Pages 47-68
  8. Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja
    Pages 69-70
  9. Back Matter
    Pages 71-79

About this book

Introduction


Keywords

Security and Privacy Intrusion Detection System Detection of unknown attacks Anomaly detection Deep learning classification Machine learning Feature learning Deep learning for dummies Intrusion detection system using neural networks Wireless networks Big data

Authors and affiliations

  • Kwangjo Kim
    • 1
  • Muhamad Erza Aminanto
    • 2
  • Harry Chandra Tanuwidjaja
    • 3
  1. 1.School of Computing (SoC)Korea Advanced Institute of Science and TechnologyDaejeonKorea (Republic of)
  2. 2.School of Computing (SoC)Korea Advanced Institute of Science and TechnologyDaejeonKorea (Republic of)
  3. 3.School of Computing (SoC)Korea Advanced Institute of Science and TechnologyDaejeonKorea (Republic of)

Bibliographic information

  • DOI https://doi.org/10.1007/978-981-13-1444-5
  • Copyright Information The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2018
  • Publisher Name Springer, Singapore
  • eBook Packages Computer Science
  • Print ISBN 978-981-13-1443-8
  • Online ISBN 978-981-13-1444-5
  • Series Print ISSN 2522-5561
  • Series Online ISSN 2522-557X
  • Buy this book on publisher's site
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Finance, Business & Banking
Electronics
IT & Software
Telecommunications
Consumer Packaged Goods
Energy, Utilities & Environment
Aerospace
Oil, Gas & Geosciences