DNA-Based Markers in Plants

  • Ronald L. Phillips
  • Indra K. Vasil

Part of the Advances in Cellular and Molecular Biology of Plants book series (CMBP, volume 6)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Robert Reiter
    Pages 9-29
  3. D.-H. Chen, R. J. Nelson, G.-L. Wang, D. J. Mackill, P. C. Ronald
    Pages 49-57
  4. Steven J. Knapp
    Pages 59-99
  5. Andrew H. Paterson, Jeffrey L. Bennetzen
    Pages 101-114
  6. Charles W. Stuber
    Pages 115-137
  7. Bruno W. S. Sobral, Mark E. Waugh, William D. Beavis
    Pages 139-166
  8. Ronald L. Phillips, Indra K. Vasil
    Pages 167-168
  9. E. C. Brummer, M. K. Sledge, J. H. Bouton, G. Kochert
    Pages 169-180
  10. Howard M. Goodman, Susan Hanley, Sam Cartinhour, J. Michael Cherry, Brian Hauge, Elliot Meyerowitz et al.
    Pages 181-186
  11. Andris Kleinhofs, Andreas Graner
    Pages 187-199
  12. Carlos F. Quiros
    Pages 201-237
  13. Andrew H. Paterson
    Pages 239-253
  14. Edward H. Coe, Mary L. Polacco, Georgia Davis, Michael D. McMullen
    Pages 255-284
  15. H. Thomas Stalker, Tracy Halward, Gary Kochert
    Pages 285-299
  16. C. Eduardo Vallejos, Paul W. Skroch, James Nienhuis
    Pages 301-317
  17. Christiane Gebhardt, Enrique Ritter, Francesco Salamini
    Pages 319-336
  18. S. R. McCouch
    Pages 337-345
  19. Jeffrey L. Bennetzen, Vaidyanathan Subramanian, Jichen Xu, Shanmukhaswami S. Salimath, Sujatha Subramanian, Dinakar Bhattramakki et al.
    Pages 347-355
  20. Randy C. Shoemaker, David Grant, Marcia Imsande
    Pages 357-378
  21. Steven J. Knapp, Simon T. Berry, Loren H. Rieseberg
    Pages 379-403
  22. Anne Frary, Steven D. Tanksley
    Pages 405-420
  23. S. F. Kianian, S. L. Fox, S. Groh, N. Tinker, L. S. O’Donoughue, P. J. Rayapati et al.
    Pages 443-462
  24. Oscar Riera-Lizarazu, M. Isabel Vales, Ronald L. Phillips
    Pages 463-497
  25. Back Matter
    Pages 499-513

About this book


The double helix architecture of DNA was elucidated in 1953. Twenty years later, in 1973, the discovery of restriction enzymes helped to create recombinant DNA mol­ ecules in vitro. The implications of these powerful and novel methods of molecular biol­ ogy, and their potential in the genetic manipulation and improvement of microbes, plants and animals, became increasingly evident, and led to the birth of modern biotechnology. The first transgenic plants in which a bacterial gene had been stably integrated were produced in 1983, and by 1993 transgenic plants had been produced in all major crop species, including the cereals and the legumes. These remarkable achievements have resulted in the production of crops that are resistant to potent but environmentally safe herbicides, or to viral pathogens and insect pests. In other instances genes have been introduced that delay fruit ripening, or increase starch content, or cause male sterility. Most of these manipulations are based on the introduction of a single gene - generally of bacterial origin - that regulates an important monogenic trait, into the crop of choice. Many of the engineered crops are now under field trials and are expected to be commercially produced within the next few years.


Arabidopsis thaliana Bur Chromosom DNA PCR bean burr evolution genes wheat

Editors and affiliations

  • Ronald L. Phillips
    • 1
  • Indra K. Vasil
    • 2
  1. 1.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulUSA
  2. 2.Laboratory of Plant Cell and Molecular BiologyUniversity of FloridaGainesvilleUSA

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media B.V. 2001
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-90-481-5672-6
  • Online ISBN 978-94-015-9815-6
  • Series Print ISSN 1381-1932
  • Buy this book on publisher's site
Industry Sectors
Consumer Packaged Goods