# Differentiable and Complex Dynamics of Several Variables

Part of the Mathematics and Its Applications book series (MAIA, volume 483)

Advertisement

Part of the Mathematics and Its Applications book series (MAIA, volume 483)

The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.

analysis on manifolds differential equation differential geometry dynamical systems global analysis integration manifold partial differential equation

- DOI https://doi.org/10.1007/978-94-015-9299-4
- Copyright Information Springer Science+Business Media B.V. 1999
- Publisher Name Springer, Dordrecht
- eBook Packages Springer Book Archive
- Print ISBN 978-90-481-5246-9
- Online ISBN 978-94-015-9299-4
- Buy this book on publisher's site

- Industry Sectors
- Finance, Business & Banking