Advertisement

Geometric Methods in System Theory

Proceedings of the NATO Advanced Study Institute held at London, England, August 27-September 7, 1973

  • Editors
  • D. Q. Mayne
  • R. W. Brockett

Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 3)

Table of contents

  1. Front Matter
    Pages I-VII
  2. Roger W. Brockett
    Pages 43-82
  3. Alberto Isidori, Antonio Ruberti
    Pages 83-130
  4. Lawrence Markus
    Pages 150-158
  5. P. Stefan
    Pages 159-164
  6. Arthur J. Krener
    Pages 174-184
  7. M. L. J. Hautus
    Pages 185-193
  8. John Grote
    Pages 194-204
  9. Ronald M. Hirschorn
    Pages 205-214
  10. Gerald S. Goodman
    Pages 215-226
  11. Søren Johansen
    Pages 227-236
  12. Robert Hermann
    Pages 237-242
  13. Héctor J. Sussmann
    Pages 243-252
  14. Velimir Jurdjevic
    Pages 253-262
  15. E. Fornasini, G. Marchesini
    Pages 263-274
  16. K. N. Swamy, T. J. Tarn
    Pages 275-284
  17. James Ting-Ho Lo
    Pages 295-304
  18. Alan S. Willsky
    Pages 305-314

About these proceedings

Introduction

Geometric Methods in System Theory In automatic control there are a large number of applications of a fairly simple type for which the motion of the state variables is not free to evolve in a vector space but rather must satisfy some constraints. Examples are numerous; in a switched, lossless electrical network energy is conserved and the state evolves on an ellipsoid surface defined by x'Qx equals a constant; in the control of finite state, continuous time, Markov processes the state evolves on the set x'x = 1, xi ~ O. The control of rigid body motions and trajectory control leads to problems of this type. There has been under way now for some time an effort to build up enough control theory to enable one to treat these problems in a more or less routine way. It is important to emphasise that the ordinary vector space-linear theory often gives the wrong insight and thus should not be relied upon.

Keywords

Nonlinear system dynamische Systeme geometry optimal control system systems theory

Bibliographic information

  • DOI https://doi.org/10.1007/978-94-010-2675-8
  • Copyright Information Springer Science+Business Media B.V. 1973
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-94-010-2677-2
  • Online ISBN 978-94-010-2675-8
  • Series Print ISSN 1389-2185
  • Buy this book on publisher's site
Industry Sectors
Aerospace
Oil, Gas & Geosciences
Engineering