Cooling Flows in Clusters and Galaxies

  • A. C. Fabian

Part of the NATO ASI Series book series (ASIC, volume 229)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Craig L. Sarazin
    Pages 1-15
  3. K. A. Arnaud
    Pages 31-40
  4. Joel N. Bregman, L. P. David
    Pages 41-46
  5. Claude R. Canizares, Thomas H. Markert, Megan E. Donahue
    Pages 63-72
  6. Hans Böhringer, Gregor E. Morfill
    Pages 87-91
  7. Robert W. O’Connell, Brian R. McNamara
    Pages 103-113
  8. R. G. Bower, R. S. Ellis, G. F. Efstathiou
    Pages 115-119
  9. I. J. Danziger, P. Focardi
    Pages 133-144
  10. W. J. Jaffe, A. G. de Bruyn, D. Sijbreng
    Pages 145-147
  11. A. Pedlar, H. Ghataure, R. D. Davies, B. Harrison, R. Perley, P. C. Crane
    Pages 149-154
  12. C. Boisson, D. Péquignot
    Pages 155-158
  13. Niels J. Westergaard
    Pages 165-173
  14. P. E. J. Nulsen
    Pages 175-187
  15. Edwin A. Valentijn
    Pages 189-198
  16. L. P. David, J. N. Bregman
    Pages 199-204
  17. Lance Miller
    Pages 205-208
  18. Tod R. Lauer
    Pages 215-223
  19. James Binney
    Pages 225-233
  20. P. A. Thomas
    Pages 235-244
  21. Timothy M. Heckman, Stefi A. Baum, Wil van Breugel, Patrick J. McCarthy
    Pages 245-250
  22. Wil van Breugel, Patrick J. McCarthy, Jacqueline van Gorkom
    Pages 251-256
  23. D. M. Sumi, M. L. Norman, L. L. Smarr
    Pages 257-261
  24. Elaine M. Sadler
    Pages 263-272
  25. Ginevra Trinchieri
    Pages 273-277
  26. William G. Mathews
    Pages 279-284
  27. R. A. E. Fosbury
    Pages 285-287
  28. Richard S. Ellis
    Pages 305-313
  29. A. C. Fabian
    Pages 315-324
  30. Patrick J. McCarthy, Hyron Spinrad, Wil van Breugel, S. Djorgovski, Michael A. Strauss, Mark Dickinson
    Pages 325-329
  31. C. S. Crawford
    Pages 331-335
  32. Edmund Bertschinger
    Pages 337-341
  33. Raymond E. White III
    Pages 343-348
  34. Michael Loewenstein
    Pages 349-352
  35. B. J. Carr, K. M. Ashman
    Pages 353-359
  36. Noam Soker, Craig L. Sarazin
    Pages 367-371
  37. Joel N. Bregman, M. M. Roberts, R. Giovanelli
    Pages 373-374
  38. Back Matter
    Pages 375-391

About this book


X-ray astronomers discovered the diffuse gas in clusters of galaxies about 20 years ago. It was later realized that the central gas density in some clusters, and in elliptical galaxies, is so high that radiative cooling is a significant energy loss. The cooling time of the gas decreases rapidly towards the centre of the cluster or galaxy and is less than a Hubble time within the innermost few hundred kiloparsecs. This results in a cooling flow in which the gas density rises in order to maintain pressure to support the weight of the overlying gas. The rate at which mass is deposited by the flow is inferred to be several hundreds of solar masses per year in some clusters. The fraction of clusters in which cooling flows are found may exceed 50 per cent. Small flows probably occur in most normal elliptical galaxies that are not in rich clusters. The implications of this simple phenomenon are profound, for we appear to be witnessing the ongoing formation of the central galaxy. In particular, since most of the gas is undetected once it cools below about 3 million K, it appears to form dark matter. There is no reason why it should be detectable with current techniques if each cooling proton only recombines once and the matter condenses into objects of low mass.


cosmic ray cosmology observatory quasar relativistic jet star star formation

Editors and affiliations

  • A. C. Fabian
    • 1
  1. 1.Institute of AstronomyUniversity of CambridgeCambridgeUK

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media B.V. 1988
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-94-010-7828-3
  • Online ISBN 978-94-009-2953-1
  • Series Print ISSN 1389-2185
  • Buy this book on publisher's site
Industry Sectors