Microcavities and Photonic Bandgaps: Physics and Applications

  • John Rarity
  • Claude Weisbuch

Part of the NATO ASI Series book series (NSSE, volume 324)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Microcavities and Photonic Bandgaps:A summary of Physics and applications

  3. Planar Semiconductor Microcavities

    1. R. P. Stanley, R. Houdré, U. Oesterle, P. Pellandini, M. Ilegems
      Pages 11-32
    2. R. Houdré, R. P. Stanley, U. Oesterle, P. Pellandini, M. Ilegems
      Pages 33-42
    3. T. R. Nelson Jr., E. K. Lindmark, D. V. Wick, K. Tai, G. Khitrova, H. M. Gibbs
      Pages 43-57
    4. J. P. Doran, A. L. Bradley, B. Roycroft, T. Aherne, J. Hegarty, R. P. Stanley et al.
      Pages 59-67
    5. I. Abram, B. Sermage, S. Long, J. Bloch, R. Planel, V. Thierry-Mieg
      Pages 69-76
    6. T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, P. Kinsler, J. S. Roberts et al.
      Pages 77-86
    7. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann
      Pages 87-94
    8. R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu et al.
      Pages 95-103
    9. A. Fainstein, B. Jusserand, V. Thierry-Mieg, R. Planel
      Pages 105-114
  4. Photonic Bandgap Materials, and Novel Structures

    1. V. Arbet-Engels, E. Yablonovitch, C. C. Cheng, A. Scherer
      Pages 125-131
    2. Pierre R. Villeneuve, Shanhui Fan, J. D. Joannopoulos
      Pages 133-151
    3. A. Orłowski, M. Rusek, J. Mostowski
      Pages 165-174
    4. Richard M. De La Rue, Thomas F. Krauss
      Pages 175-192
    5. T. Baba, T. Matsuzaki
      Pages 193-202
    6. P. ST. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts
      Pages 203-218
    7. J. M. Gerard, D. Barrier, J. Y. Marzin
      Pages 219-235
    8. Michael D. Tocci, Mark J. Bloemer, Michael Scalora, Charles M. Bowden, Jonathan P. Dowling
      Pages 237-248
    9. A. Serpengüzel, S. Arnold, G. Griffel
      Pages 257-263
    10. W. L. Barnes, S. C. Kitson, T. W. Preist, J. R. Sambles
      Pages 265-274
    11. S. G. Romanov, C. M. Sotomayor Torres
      Pages 275-282
    12. C. E. Cameron, J. G. Rarity, P. J. Roberts, P. R. Tapster
      Pages 283-290
    13. J. C. Knight, N. Dubreuil, V. Lefevre-Seguin, J. M. Raimond, S. Haroche
      Pages 291-298
    14. F. Wijnands, J. B. Pendry, P. J. Roberts, P. M. Bell, L. Martín Moreno, F. J. Garcia-Vidal
      Pages 299-308
    15. Peter M. W. Skovgaard, Stuart D. Brorson, Ivar Balslev, Christian C. Larsen
      Pages 309-314
  5. Device Applications

    1. M. G. Craford
      Pages 323-331
    2. H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, G. Borghs
      Pages 333-342
    3. N. E. J. Hunt, E. F. Schubert
      Pages 343-352
    4. J. Bleuse, E. Hadji, N. Magnea, J.-L. Pautrat
      Pages 353-362
    5. U. Mohideen, R. E. Slusher
      Pages 363-375
    6. Anders Karlsson, Jörn Dechow, Klaus Streubel, Magnus Höijer, Steffen Albrecht
      Pages 377-386
    7. C. Gmachl, A. Golshani, A. Köck, E. Gornik, J. F. Walker
      Pages 387-396
    8. J. Grüner, F. Cacialli, I. D. W. Samuel, R. H. Friend
      Pages 407-417
    9. S. V. Dewar, P. Blood, F. Yang, J. S. Roberts
      Pages 419-426
    10. H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux
      Pages 427-442
  6. Quantum Optics

    1. W. Lange, Q. A. Turchette, C. J. Hood, H. Mabuchi, H. J. Kimble
      Pages 443-456
    2. Y. Yamamoto, J. M. Jacobson, S. Pau, H. Cao, G. Björk
      Pages 457-466
    3. E. Giacobino, A. Lambrecht, J. M. Courty, T. Coudreau
      Pages 467-475
    4. P. Grangier, J.-PH. Poizat, T.-C. Zhang, F. Marin, A. Bramati, E. Giacobino
      Pages 477-488
    5. Magnus Höijer, Anders Karlsson
      Pages 489-495
    6. A. M. Fox, M. Dabbicco, J. F. Ryan
      Pages 507-516
    7. R. J. Ram, A. İmamoglu
      Pages 517-531

About this book


The control of optical modes in microcavities or in photonic bandgap (PBG) materials is coming of age! Although these ideas could have been developed some time ago, it is only recently that they have emerged, due to advances in both atomic physics and in fabrication techniques, be it on the high-quality dielectric mirrors required for high-finesse Fabry­ Perot resonators or in semiconductor multilayer deposition methods. Initially the principles of quantum electro-dynamics (QED) were demonstrated in elegant atomic physics experiments. Now solid-state implementations are being investigated, with several subtle differences from the atomic case such as those due to their continuum of electronic states or the near Boson nature of their elementary excitations, the exciton. Research into quantum optics brings us ever newer concepts with potential to improve system performance such as photon squeezing, quantum cryptography, reversible taps, photonic de Broglie waves and quantum computers. The possibility of implementing these ideas with solid-state systems gives us hope that some could indeed find their way to the market, demonstrating the continuing importance of basic research for applications, be it in a somewhat more focused way than in earlier times for funding.


Planar crystal laser semiconductor semiconductors

Editors and affiliations

  • John Rarity
    • 1
  • Claude Weisbuch
    • 2
  1. 1.Defence Research AgencyMalvernUK
  2. 2.Département de physique et laboratoire de physique de la matière condenséeEcole PolytechniquePalaiseauFrance

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media B.V. 1996
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-94-010-6626-6
  • Online ISBN 978-94-009-0313-5
  • Series Print ISSN 0168-132X
  • Buy this book on publisher's site
Industry Sectors
Energy, Utilities & Environment