© 2011

X-Ray Lasers 2010

Proceedings of the 12th International Conference on X-Ray Lasers, 30 May–4 June 2010, Gwangju, Korea

  • Jongmin Lee
  • Chang Hee Nam
  • Karol A. Janulewicz
Conference proceedings

Part of the Springer Proceedings in Physics book series (SPPHY, volume 136)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. X-Ray Laser Systems

    1. Front Matter
      Pages 1-1
    2. C. L. S. Lewis, T. Dzelzainis, D. Riley, D. Doria, S. Whyte, M. Borghesi et al.
      Pages 3-13
    3. T. Kawachi, N. Hasegawa, M. Nishikino, M. Ishino, T. Imazono, T. Ohba et al.
      Pages 15-24
    4. B. Zielbauer, T. Kuehl, B. Aurand, V. Bagnoud, B. Ecker, U. Eisenbarth et al.
      Pages 31-38
    5. D. Ros, K. Cassou, B. Cros, S. Daboussi, J. Demailly, O. Guilbaud et al.
      Pages 39-46
  3. Repetitive X-Ray Lasers

    1. Front Matter
      Pages 55-55
    2. Jorge J. Rocca, B. Reagan, F. Furch, Y. Wang, D. Alessi, D. H. Martz et al.
      Pages 57-68
    3. J. E. Balmer, C. Imesch, F. Staub
      Pages 69-76
    4. D. Zimmer, B. Zielbauer, M. Pittman, O. Guilbaud, J. Habib, S. Kazamias et al.
      Pages 77-81
    5. Jiunn-Yuan Lin, Ming-Chang Chou, Ping-Hsun Lin, Ru-Ping Huang, Szu-Yuan Chen, Hsu-Hsin Chu et al.
      Pages 83-92
    6. Masaharu Nishikino, Yoshihiro Ochi, Noboru Hasegawa, Tetsuya Kawachi, Toshiyuki Ohba, Takeshi Kaihori et al.
      Pages 93-98
  4. X-Ray Laser Amplifiers – Seeding

    1. Front Matter
      Pages 99-99
    2. A. Klisnick, O. Guilbaud, J. P. Goddet, F. Tissandier, L. M. Meng, L. Urbanski et al.
      Pages 101-109
    3. Chul Min Kim, Karol A. Janulewicz, Jongmin Lee
      Pages 111-120
    4. J. Seres, E. Seres, D. Hochhaus, B. Ecker, D. Zimmer, V. Bagnoud et al.
      Pages 121-126
    5. S. Sebban, F. Tissandier, J. P. Goddet, O. Guilbaud, J. Gautier, Ph. Zeitoun et al.
      Pages 127-135
    6. E. Oliva, Ph. Zeitoun, P. Velarde, M. Fajardo, K. Cassou, D. Ros et al.
      Pages 137-142

About these proceedings


This book provides a comprehensive review of the present status of achievements in the area of soft X-ray laser sources, supplemented by information about sources based on relativistic laser˗matter interaction and their future, and incoherent sources within a very broad spectral range. The diversity of demonstrated or planned applications presented in the book supports the thesis that such sources have now reached a mature stage of development.

There is a significant effort worldwide to develop very bright, ultra-short duration, radiation sources in the extreme ultraviolet and X-ray spectral regions, driven by a diversity of potential applications in nearly all branches of science. This book updates the status in this field and focuses on developments in laser plasma-based methods. The scheme of transient inversion proves its robustness by being dominant in the area of repetitive X-ray lasers pumped at grazing-incidence-geometry by optical lasers of moderate energy at increasing repetition rates – these characteristics enable them to be used in university-class laboratories.

Experimental and theoretical progress associated with the seeding technique by high harmonics is well covered. This technique is important as it is also considered from the perspective of seeding X-ray free electron lasers. Dramatic progress in laser development and extending the available power range to the petawatt level is stimulating a new generation of methods of ultra-bright and ultra-short pulses of energetic X-rays. These methods, as well as some elements of attoscience based on high harmonics generation, are well represented. Finally, a comprehensive survey of possible applications of the described sources in different areas of science constitutes, by defining the parameter set of interest, a framework for considering the direction further developments will take.


Applications of XRLs High harmonic X-ray sources coherent x-ray diffraction imaging free-electron lasers laser produced plasmas nanoimaging recombination XRLs reflective X-ray optics semiconductor lithography soft x-ray lasers

Editors and affiliations

  • Jongmin Lee
    • 1
  • Chang Hee Nam
    • 2
  • Karol A. Janulewicz
    • 1
  1. 1.Advanced Photonics Research InstituteGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  2. 2.Department of Physics and Coherent X-ray Research CentreKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

About the editors

Karol A. Janulewicz; Chang Hee Nam Advanced Photonics Research Institute, GIST, Gwangju, Korea

Bibliographic information

Industry Sectors
Energy, Utilities & Environment