Multiscale Methods in Computational Mechanics

Progress and Accomplishments

  • René de Borst
  • Ekkehard Ramm

Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 55)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Computational Fluid Dynamics

    1. Front Matter
      Pages 1-1
    2. Y. Bazilevs, V. M. Calo, T. J. R. Hughes, G. Scovazzi
      Pages 3-18
    3. Guillermo Hauke, Mohamed H. Doweidar, Daniel Fuster
      Pages 19-38
    4. Peter Gamnitzer, Volker Gravemeier, Wolfgang A. Wall
      Pages 39-52
    5. Ido Akkerman, Steven J. Hulshoff, Kris G. van der Zee, René de Borst
      Pages 53-73
  3. Materials with Microstructure

  4. Composites, Laminates, and Structures: Optimization

    1. Front Matter
      Pages 213-213
    2. M. V. Cid Alfaro, A. S. J. Suiker, R. de Borst
      Pages 233-259
    3. O. Allix, P. Gosselet, P. Kerfriden
      Pages 261-279
    4. Ekkehard Ramm, Andrea Erhart, Thomas Hettich, Ingrid Bruss, Frédéric Hilchenbach, Junji Kato
      Pages 281-304
    5. Stefan Scheiner, Bernhard Pichler, Christian Hellmich, Herbert A. Mang
      Pages 305-328
    6. Th. Flatscher, T. Daxner, D. H. Pahr, F. G. Rammerstorfer
      Pages 329-346
    7. Albert de Wit, Fred van Keulen
      Pages 347-377
  5. Coupled Problems and Porous Media

    1. Front Matter
      Pages 379-379
    2. Bernhard A. Schrefler, Francesco Pesavento, Dariusz Gawin
      Pages 381-404
    3. Wolfgang Ehlers, Bernd Markert, Ayhan Acartürk
      Pages 405-424
    4. F. Kraaijeveld, J. M. Huyghe
      Pages 425-442
  6. Back Matter
    Pages 443-446

About this book


Many features in the behaviour of structures, materials and flows are caused by phenomena that occur at one to several scales below common levels of observation. Multiscale methods account for this scale dependence: They either derive properties at the level of observation by repeated numerical homogenization of more fundamental physical properties defined several scales below (upscaling), or they devise concurrent schemes where those parts of the domain that are of interest are computed with a higher resolution than parts that are of less interest or where the solution is varying only slowly. This work is a result of a sustained German-Dutch cooperation and written by internationally leading experts in the field and gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies are addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics.


inelastic solid materials multiscale mechanics optimization scale transitions turbulent flows

Editors and affiliations

  • René de Borst
    • 1
  • Ekkehard Ramm
    • 2
  1. 1.Dept. Mechanical EngineeringEindhoven University of TechnologyEindhovenNetherlands
  2. 2.Inst. Mechanik, Lehrstuhl IIUniv. StuttgartStuttgartGermany

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media B.V. 2011
  • Publisher Name Springer, Dordrecht
  • eBook Packages Engineering
  • Print ISBN 978-90-481-9808-5
  • Online ISBN 978-90-481-9809-2
  • Series Print ISSN 1613-7736
  • Series Online ISSN 1860-0816
  • Buy this book on publisher's site
Industry Sectors
IT & Software
Energy, Utilities & Environment
Oil, Gas & Geosciences