© 2009

Mechanical Systems, Classical Models

Volume III: Analytical Mechanics


  • Mechanics has been at the heart of theoretical physics, ever since Ernst Mach’s seminal work on the subject

  • Presents a thoroughly up-to-date treatment of how mechanical theories are constructed

  • The author has spent a lifetime studying this subject and brings together all of his experience and thought on the mechanics of particles into this volume

  • Comprehensive with references to over 600 books


Table of contents

  1. Front Matter
    Pages I-X
  2. Petre P. Teodorescu
    Pages 1-114
  3. Petre P. Teodorescu
    Pages 115-212
  4. Petre P. Teodorescu
    Pages 213-333
  5. Petre P. Teodorescu
    Pages 411-504
  6. Petre P. Teodorescu
    Pages 505-628
  7. Petre P. Teodorescu
    Pages 629-738
  8. Back Matter
    Pages 739-772

About this book


This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems.
The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences.
Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as the author's original contributions.

Audience: scientists and researchers in applied mathematics, physics and engineering.


Lagrangian mechanics MB09 analytical methods in mechanical systems applied mathematics dynamics dynamics of mechanical systems mechanics

Authors and affiliations

  1. 1.Faculty of MathematicsUniversity of BucharestBucuresti 20Romania

About the authors

Prof. Dr. Doc. Petre P. Teodorescu
Born: June 30, 1929, Bucuresti.
M.Sc.: Faculty of Mathematics of the University of Bucharest, 1952; Faculty of Bridges of the Technical University of Civil Engineering, Bucharest, 1953.
Ph.D.: "Calculus of rectangular deep beams in a general case of support and loading", Technical University of Civil Engineering, Bucharest, 1955.
Academic Positions: Consulting Professor.
at the University of Bucharest, Faculty of Mathematics.
Fields of Research: Mechanics of Deformable Solids (especially Elastic Solids), Mathematical Methods of Calculus in Mechanics.
Selected Publications:
1. "Applications of the Theory of Distributions in Mechanics", Editura Academiei-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1974 (with W. Kecs);
2. "Dynamics of Linear Elastic Bodies", Editura Academiei-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1975;
3. "Spinor and Non-Euclidean Tensor Calculus with Applications", Editura Tehnicã-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1983 (with I. Beju and E. Soos);
4. "Mechanical Systems", vol. I, II, Editura Tehnicã, Bucuresti, 1988.
Invited Addresses: The 2nd European Conference of Solid Mechanics, September 1994, Genoa, Italy: Leader of a Section of the Conference and a Communication.
Lectures Given Abroad: Hannover, Dortmund, Paderborn, Germany, 1994; Padova, Pisa, Italy, 1994.
Additional Information: Prize "Gh. Titeica" of the Romanian Academy in 1966; Member in the Advisory Board of Meccanica (Italy), Mechanics Research Communications and Letters in Applied Engineering Sciences (U.S.A.); Member of GAMM (Germany) and AMS (U.S.A.); Reviewer: Mathematical Reviews, Zentralblatt fuer Mathematik und ihre Grenzgebiete, Ph.D. advisor.

Bibliographic information

Industry Sectors
Energy, Utilities & Environment


From the reviews:

“The present one deals with analytical mechanics. … The presentation of material is carefully thought out and combines the exactness, completeness and simplicity that helps in understanding of the material. A particular impression makes the rich bibliography and the completeness of author’s scope. This book is one of the best modern courses on analytical mechanics … . Undoubtedly, this course will be useful for scientists, engineers, teachers and students.” (Alexander Mikhailovich Kovalev, Zentralblatt MATH, Vol. 1177, 2010)