Advertisement

Handbook of Glycosyltransferases and Related Genes

  • Naoyuki Taniguchi
  • Koichi Honke
  • Minoru Fukuda
  • Henrik Clausen
  • Kiyoshi Furukawa
  • Gerald W. Hart
  • Reiji Kannagi
  • Toshisuke Kawasaki
  • Taroh Kinoshita
  • Takashi Muramatsu
  • Masaki Saito
  • Joel H. Shaper
  • Kazuyuki Sugahara
  • Lawrence A. Tabak
  • Dirk H. Van den Eijnden
  • Masaki Yanagishita
  • James W. Dennis
  • Koichi Furukawa
  • Yoshio Hirabayashi
  • Masao Kawakita
  • Koji Kimata
  • Ulf Lindahl
  • Hisashi Narimatsu
  • Harry Schachter
  • Pamela Stanley
  • Akemi Suzuki
  • Shuichi Tsuji
  • Katsuko Yamashita
Book

Table of contents

  1. Front Matter
    Pages II-XVIII
  2. Glucosyltransferase

    1. Front Matter
      Pages 1-1
    2. Yoshio Hirabayashi, Shinichi Ichikawa
      Pages 3-8
  3. Galactosyltransferases

    1. Front Matter
      Pages 9-9
    2. Nancy L. Shaper, Joel H. Shaper
      Pages 11-19
    3. Kiyoshi Furukawa, Henrik Clausen
      Pages 20-26
    4. Thierry Hennet, Eric G. Berger
      Pages 27-32
    5. Koichi Furukawa
      Pages 33-36
    6. Hisashi Narimatsu
      Pages 37-43
    7. Dirk H. Van Den Eijnden, David H. Joziasse
      Pages 44-50
  4. N-Acetylglucosaminyltransferases

    1. Front Matter
      Pages 59-59
    2. Pamela Stanley
      Pages 61-69
    3. Harry Schachter
      Pages 70-79
    4. Yoshitaka Ikeda, Naoyuki Taniguchi
      Pages 80-86
    5. Mari T. Minowa, Suguru Oguri, Aruto Yoshida, Makoto Takeuchi
      Pages 87-93
    6. James W. Dennis
      Pages 94-101
    7. Koichi Honke, Naoyuki Taniguchi
      Pages 102-106
    8. Robert S. Haltiwanger
      Pages 107-113
    9. Minoru Fukuda
      Pages 114-124
    10. Minoru Fukuda
      Pages 125-132
    11. Minoru Fukuda, Tilo Schwientek, Henrik Clausen
      Pages 133-142
    12. Minoru Fukuda, Jiunn-Chern Yeh
      Pages 143-150
    13. Jun Nakayama
      Pages 151-157
    14. Sai Prasad N. Iyer, Gerald W. Hart
      Pages 158-163
  5. N-Acetylgalactosaminyltransferases

    1. Front Matter
      Pages 165-165
    2. Fred K. Hagen, Kelly G. Ten Hagen, Lawrence A. Tabak
      Pages 167-173
    3. Koichi Furukawa
      Pages 174-179
    4. Koichi Honke
      Pages 197-201
  6. Fucosyltransferases

    1. Front Matter
      Pages 203-203
    2. Rafael Oriol, Rosella Mollicone
      Pages 205-217
    3. Hisashi Narimatsu
      Pages 218-225
    4. Hisashi Narimatsu
      Pages 226-231
    5. Reiji Kannagi
      Pages 232-236
    6. Reiji Kannagi
      Pages 237-245
    7. Hisashi Narimatsu
      Pages 246-251
    8. Hisashi Narimatsu
      Pages 252-258
    9. Eiji Miyoshi, Naoyuki Taniguchi
      Pages 259-263
  7. Sialyltransferases

    1. Front Matter
      Pages 265-265
    2. Minoru Fukuda, Jamey D. Marth
      Pages 267-273
    3. Toshiro Hamamoto, Shuichi Tsuji
      Pages 274-278
    4. Shinobu Kitazume-Kawaguchi, Shuichi Tsuji
      Pages 279-283
    5. Shinobu Kitazume-Kawaguchi, Shuichi Tsuji
      Pages 284-288
    6. Masaki Saito, Atsushi Ishii
      Pages 289-294
    7. Toshiro Hamamoto, Shuichi Tsuji
      Pages 295-300
    8. Nobuyuki Kurosawa, Shuichi Tsuji
      Pages 301-305
    9. Nobuyuki Kurosawa, Shuichi Tsuji
      Pages 306-310
    10. Shou Takashima, Shuichi Tsuji
      Pages 311-316

About this book

Introduction

The so-called postgenomic research era has now been launched, and the field of gly­ cobiology and glycotechnology has become one of the most important areas in life science because glycosylation is the most common post-translational modification reaction of proteins in vivo. On the basis of Swiss-Prot data, over 50% proteins are known to undergo glycosylation, but in fact the actual functions of most of the sugar chains in the glycoconjugates remain unknown. The complex carbohydrate chains of glycoproteins, glycolipids, and proteoglycans represent the secondary gene products formed through the reactions of glycosyl­ transferases. The regulation of the biosynthesis of sugar chains is under the control of the expression of glycosyltransferases, their substrate specificity, and their local­ ization in specific tissue sites. There is a growing body of evidence to suggest that these enzymes play pivotal roles in a variety of important cellular differentiation and developmental events, as well as in disease processes. Over 300 glycosyltransferases appear to exist in mammalian tissues. If the genes that have been purified and cloned from various species such as humans, cattle, pigs, rats and mice are counted as one, approximately 110 glycogenes that encode glycosyltransferases and related genes have been cloned at present, and this number continues to grow each day. However, most of the functions of the glycosyltransferase genes and related genes are unknown. This fact has stimulated numerous new and interesting approaches in molecular biologi­ cal investigations.

Keywords

Glycogen Nucleotide carbohydrates enzyme enzymes glycobiology glycoconjugates glycotechnology sulfotransferases

Editors and affiliations

  • Naoyuki Taniguchi
    • 1
  • Koichi Honke
    • 1
  • Minoru Fukuda
    • 2
  • Henrik Clausen
  • Kiyoshi Furukawa
  • Gerald W. Hart
  • Reiji Kannagi
  • Toshisuke Kawasaki
  • Taroh Kinoshita
  • Takashi Muramatsu
  • Masaki Saito
  • Joel H. Shaper
  • Kazuyuki Sugahara
  • Lawrence A. Tabak
  • Dirk H. Van den Eijnden
  • Masaki Yanagishita
  • James W. Dennis
  • Koichi Furukawa
  • Yoshio Hirabayashi
  • Masao Kawakita
  • Koji Kimata
  • Ulf Lindahl
  • Hisashi Narimatsu
  • Harry Schachter
  • Pamela Stanley
  • Akemi Suzuki
  • Shuichi Tsuji
  • Katsuko Yamashita
  1. 1.Department of BiochemistryOsaka University Medical SchoolOsakaJapan
  2. 2.Glycobiology Program, Cancer Research InstituteThe Burnham InstituteLa JollaUSA

Bibliographic information

Industry Sectors
Pharma