© 2008

Vanishing and Finiteness Results in Geometric Analysis

A Generalization of the Bochner Technique


Part of the Progress in Mathematics book series (PM, volume 266)

About this book


This book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory.

All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds.

The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form.


Riemannian geometry Riemannian manifold calculus comparison theorem differential equation geometric analysis manifold potential theory

Authors and affiliations

  1. 1.Dipartimento di Fisica e MatematicaUniversità dell’Insubria — ComoComoItaly
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Bibliographic information

  • Book Title Vanishing and Finiteness Results in Geometric Analysis
  • Book Subtitle A Generalization of the Bochner Technique
  • Authors Stefano Pigola
    Marco Rigoli
    Alberto G Setti
  • Series Title Progress in Mathematics
  • Series Abbreviated Title Progress in Mathematics(Birkhäuser)
  • DOI
  • Copyright Information Birkhäuser Verlag AG 2008
  • Publisher Name Birkhäuser Basel
  • eBook Packages Mathematics and Statistics Mathematics and Statistics (R0)
  • Hardcover ISBN 978-3-7643-8641-2
  • eBook ISBN 978-3-7643-8642-9
  • Series ISSN 0743-1643
  • Series E-ISSN 2296-505X
  • Edition Number 1
  • Number of Pages XIV, 282
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Differential Geometry
    Global Analysis and Analysis on Manifolds
  • Buy this book on publisher's site