Functional Analysis and Evolution Equations

The Günter Lumer Volume

  • Herbert Amann
  • Wolfgang Arendt
  • Matthias Hieber
  • Frank M. Neubrander
  • Serge Nicaise
  • Joachim von Below

Table of contents

  1. Front Matter
    Pages i-xx
  2. Félix Ali Mehmeti, Robert Haller-Dintelmann, Virginie Régnier
    Pages 1-16
  3. Fuensanta Andreu, Vicent Caselles, José M. Mazón
    Pages 17-34
  4. Boris Baeumer, Mihály Kovács, Mark M. Meerschaert
    Pages 35-50
  5. Alampallam V. Balakrishnan
    Pages 51-65
  6. Ralph Chill, Valentin Keyantuo, Mahamadi Warma
    Pages 113-130
  7. Lorenzo D’Ambrosio, Enzo Mitidieri
    Pages 147-155
  8. Wolfgang Desch, Stig-Olof Londen
    Pages 157-169
  9. Odo Diekmann, Mats Gyllenberg
    Pages 187-200
  10. Tanja Eisner, Bálint Farkas
    Pages 201-208
  11. Antonius F. M. ter Elst, Derek W. Robinson
    Pages 209-221
  12. Joachim Escher, Zhaoyong Feng
    Pages 223-238
  13. Mohamed Farhloul, Réda Korikache, Luc Paquet
    Pages 239-256
  14. Reinhard Farwig, Hideo Kozono, Hermann Sohr
    Pages 257-272
  15. Hector O. Fattorini
    Pages 273-290
  16. Eduard Feireisl, Šárka Nečasová
    Pages 291-305
  17. Valentin Keyantuo, Carlos Lizama
    Pages 371-387
  18. Robert H. Martin Jr., Toshitaka Matsumoto, Shinnosuke Oharu, Naoki Tanaka
    Pages 457-502
  19. Jan Prüss, Stefan Sperlich, Mathias Wilke
    Pages 547-559
  20. Yoshihiro Shibata
    Pages 595-611
  21. Back Matter
    Pages 637-637

About this book


Günter Lumer was an outstanding mathematician whose work has great influence on the research community in mathematical analysis and evolution equations. He was at the origin of the breath-taking development the theory of semigroups saw after the pioneering book of Hille and Phillips of 1957. This volume contains invited contributions presenting the state of the art of these topics and reflecting the broad interests of Günter Lumer. 


Boundary value problem Eigenvalue calculus differential equation evolution equation functional analysis maximum partial differential equation wave equation

Editors and affiliations

  • Herbert Amann
    • 1
  • Wolfgang Arendt
    • 2
  • Matthias Hieber
    • 3
  • Frank M. Neubrander
    • 4
  • Serge Nicaise
    • 5
  • Joachim von Below
    • 6
  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland
  2. 2.Abteilung Angewandte AnalysisUniversität UlmUlmGermany
  3. 3.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  5. 5.Université de Valenciennes et du Hainaut CambrésisValenciennes Cedex 9France
  6. 6.Laboratoire de Mathématiques Pures et Appliquées — LMPA “Joseph Liouville”Université du Littoral-Côte d’OpaleCalais CedexFrance

Bibliographic information

Industry Sectors
Finance, Business & Banking
Energy, Utilities & Environment