Electromagnetic Fluctuations at the Nanoscale

Theory and Applications

  • Aleksandr I. Volokitin
  • Bo N.J. Persson

Part of the NanoScience and Technology book series (NANO)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 1-20
  3. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 21-27
  4. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 29-49
  5. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 51-67
  6. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 69-90
  7. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 91-121
  8. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 123-151
  9. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 153-188
  10. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 189-209
  11. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 211-226
  12. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 227-242
  13. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 243-260
  14. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 261-298
  15. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 299-319
  16. Aleksandr I. Volokitin, Bo N.J. Persson
    Pages 321-330
  17. Back Matter
    Pages 331-425

About this book

Introduction

This book provides a general formalism for the calculation of the spectral correlation function for the fluctuating electromagnetic field. The procedure is applied to the radiative heat transfer and the van der Waals friction using both the semi-classical theory of the fluctuating electromagnetic field and quantum field theory. Applications of the radiative heat transfer and non-contact friction to scanning probe spectroscopy are presented. The theory gives a tentative explanation for the experimental non-contact friction data.
The book explains that radiative heat transfer and the van der Waals friction are largely enhanced at short separations between the bodies due to the evanescent electromagnetic waves. Particular strong enhancement occurs if the surfaces of the bodies can support localized surface modes like surface plasmons, surface polaritons or adsorbate vibrational modes. An electromagnetic field outside a moving body can also be created by static charges which are always present on the surface of the body due to inhomogeneities, or due to a bias voltage. This electromagnetic field produces electrostatic friction which can be significantly enhanced if on the surface of the body there is a 2D electron or hole system or an incommensurate adsorbed layer of ions exhibiting acoustic vibrations.

Keywords

Electrostatic friction Frictional drag effect in low-dimensional structures Near-field radiative heat transfer Thermal radiation at the nanoscale van der Waals friction

Authors and affiliations

  • Aleksandr I. Volokitin
    • 1
  • Bo N.J. Persson
    • 2
  1. 1.SamaraRussia
  2. 2.PGI-1, IAS-1Forschungszentrum Jülich GmbHJülichGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-53474-8
  • Copyright Information Springer-Verlag Berlin Heidelberg 2017
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Chemistry and Materials Science
  • Print ISBN 978-3-662-53473-1
  • Online ISBN 978-3-662-53474-8
  • Series Print ISSN 1434-4904
  • Series Online ISSN 2197-7127
  • About this book
Industry Sectors
Materials & Steel
Chemical Manufacturing
Biotechnology
Electronics
Consumer Packaged Goods
Oil, Gas & Geosciences
Engineering