Advertisement

© 2004

Complex Abelian Varieties

Book

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 302)

Table of contents

  1. Front Matter
    Pages I-XI
  2. Christina Birkenhake, Herbert Lange
    Pages 1-4
  3. Christina Birkenhake, Herbert Lange
    Pages 5-5
  4. Christina Birkenhake, Herbert Lange
    Pages 7-22
  5. Christina Birkenhake, Herbert Lange
    Pages 23-44
  6. Christina Birkenhake, Herbert Lange
    Pages 45-68
  7. Christina Birkenhake, Herbert Lange
    Pages 69-112
  8. Christina Birkenhake, Herbert Lange
    Pages 113-144
  9. Christina Birkenhake, Herbert Lange
    Pages 145-177
  10. Christina Birkenhake, Herbert Lange
    Pages 179-207
  11. Christina Birkenhake, Herbert Lange
    Pages 209-241
  12. Christina Birkenhake, Herbert Lange
    Pages 243-280
  13. Christina Birkenhake, Herbert Lange
    Pages 281-313
  14. Christina Birkenhake, Herbert Lange
    Pages 315-362
  15. Christina Birkenhake, Herbert Lange
    Pages 363-409
  16. Christina Birkenhake, Herbert Lange
    Pages 411-438
  17. Christina Birkenhake, Herbert Lange
    Pages 439-478
  18. Christina Birkenhake, Herbert Lange
    Pages 479-519
  19. Christina Birkenhake, Herbert Lange
    Pages 521-547
  20. Christina Birkenhake, Herbert Lange
    Pages 549-566

About this book

Introduction

Abelian varieties are special examples of projective varieties. As such they can be described by a set of homogeneous polynomial equations. The theory of abelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.

The second edition contains five new chapters which present some of the most important recent result on the subject. Among them are results on automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture.

Keywords

Abelian variety Cohomology algebra algebraic varieties moduli space projective embedding theta function

Authors and affiliations

  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenGermany

Bibliographic information

  • Book Title Complex Abelian Varieties
  • Authors Christina Birkenhake
    Herbert Lange
  • Series Title Grundlehren der mathematischen Wissenschaften
  • DOI https://doi.org/10.1007/978-3-662-06307-1
  • Copyright Information Springer-Verlag Berlin Heidelberg 2004
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Hardcover ISBN 978-3-540-20488-6
  • Softcover ISBN 978-3-642-05807-3
  • eBook ISBN 978-3-662-06307-1
  • Series ISSN 0072-7830
  • Edition Number 2
  • Number of Pages XI, 638
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Algebraic Geometry
    Number Theory
    Several Complex Variables and Analytic Spaces
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking

Reviews

From the reviews:

"… the authors have somehow managed to make it unique in several respects: not only is it far more readable than most of other book on the subject, but it is also much more complete. It is, in my opinion, a very valuable reference book … . […] …prerequisites are kept to a minimum. Very little background in algebraic geometry is necessary, almost all proofs are complete and accessible references are provided whenever they are not. …Olivier Debarre in Mathematical Reviews, 1994

"It is a great reference and textbook, detailed, very up-to-date, thorough, clearly written and perfectly arranged."
W. Kleinert in Zentralblatt MATH, 1993

"… written in an understandable and systematical way and can be recommended to all mathematicians and physicists interested in the subject."
Newsletter of the European Mathematical Society, 1993

From the reviews of the second edition:

"This book aims to be a course in Lie groups that can be covered in one year with a group of seasoned graduate students. … offers a wealth of complementary, partly quite recent material that is not found in any other textbook on Lie groups. … this book covers an unusually wide spectrum of topics … . the entire presentation is utmost thorough, comprehensive, lucid and absolutely user-friendly. … All together, this graduate text his a highly interesting, valuable and welcome addition … . (Werner Kleinert, Zentralblatt MATH, Vol. 1053, 2005)

From the reviews of the second edition:

"This is the second, substantially extended edition of the book … . The book well deserves to become a standard reference for more researchers working or interested in the theory of abelian varieties." (Fumio Hazama, Mathematical Reviews, 2005c)

"The book under review is the second, essentially augmented edition of the original standard text, which now also reflects some of the very recent developments. … the bibliography has been accordingly up-dated and enhanced. … Summing up, the second, amply enlarged and up-dated edition of this outstanding standard monograph on complex abelian varieties has increased its utility in a significant degree, and its leading position among the existing books on the subject has been evidently strengthened." (Werner Kleinert, Zentralblatt MATH, Vol. 1056, 2005)