Advertisement

Introduction to Étale Cohomology

  • Güter Tamme

Part of the Universitext book series (UTX)

Table of contents

  1. Front Matter
    Pages I-IX
  2. Güter Tamme
    Pages 1-21
  3. Güter Tamme
    Pages 23-83
  4. Güter Tamme
    Pages 85-177
  5. Back Matter
    Pages 179-188

About this book

Introduction

Étale Cohomology is one of the most important methods in modern Algebraic Geometry and Number Theory. It has, in the last decades, brought fundamental new insights in arithmetic and algebraic geometric problems with many applications and many important results. The book gives a short and easy introduction into the world of Abelian Categories, Derived Functors, Grothendieck Topologies, Sheaves, General Étale Cohomology, and Étale Cohomology of Curves.

Keywords

Abelian Varieties Abelsche Varietäten Derived Functors Derivierte Funktoren Garben Grothendieck Grothendieck Topology Sheaves Topologien cohomology cohomology theory etale Cohomology homological algebra homology number theory

Authors and affiliations

  • Güter Tamme
    • 1
  1. 1.Mathematisches InstitutUniversität RegensburgRegensburgGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-78421-7
  • Copyright Information Springer-Verlag Berlin Heidelberg 1994
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-57116-2
  • Online ISBN 978-3-642-78421-7
  • Series Print ISSN 0172-5939
  • Series Online ISSN 2191-6675
  • Buy this book on publisher's site