Advertisement

Visualization and Mathematics

Experiments, Simulations and Environments

  • Hans-Christian Hege
  • Konrad Polthier
Book

Table of contents

  1. Front Matter
    Pages I-XIX
  2. Visualizing Mathematics

    1. Front Matter
      Pages 1-1
    2. George Francis, John M. Sullivan, Rob B. Kusner, Ken A. Brakke, Chris Hartman, Glenn Chappell
      Pages 3-20
    3. Barbara Hausmann, Britta Slopianka, Hans-Peter Seidel
      Pages 21-36
    4. Geoffrey Martin, Ivan Sterling
      Pages 37-51
    5. Dennis Roseman
      Pages 67-82
    6. Dietmar Saupe, Matthias Ruhl
      Pages 83-92
  3. Geometric Algorithms and Experiments

    1. Front Matter
      Pages 93-93
    2. Ken A. Brakke, John M. Sullivan
      Pages 95-117
    3. Karsten Große-Brauckmann, Konrad Polthier
      Pages 119-134
    4. Daniel H. Huson
      Pages 135-139
    5. Bernd Oberknapp, Konrad Polthier
      Pages 141-161
  4. Visualization Algorithms and Data Structures

    1. Front Matter
      Pages 163-163
    2. Markus Kohler, Heinrich Müller
      Pages 165-179
    3. Henrik Battke, Detlev Stalling, Hans-Christian Hege
      Pages 181-195
    4. Martin Rumpf, Bernhard Schupp
      Pages 197-208
  5. Visualization Environments

    1. Front Matter
      Pages 209-209
    2. Markus Alefeld, Jörg Haber, Alexander Heim
      Pages 211-225
    3. Ekkehard Beier
      Pages 227-238
    4. Charles Gunn, Armin Ortmann, Ulrich Pinkall, Konrad Polthier, Uwe Schwarz
      Pages 249-265
    5. Jacques Lemordant
      Pages 267-278
  6. Visualization and Simulation Techniques

    1. Front Matter
      Pages 301-301
    2. Rudolf Beck, Peter Deuflhard, Hans-Christian Hege, Martin Seebaß, Detlev Stalling
      Pages 303-328
    3. Monika Wierse, Thomas Geßner, Dietmar Kröner
      Pages 347-356
  7. Back Matter
    Pages 357-388

About this book

Introduction

Visualization and mathematics have begun a fruitful relationship, establishing many links between problems and solutions of both fields. In some areas of mathematics, such as numerical mathematics and differential geometry, visualization techniques are applied with great success. On the other hand, visualization methods are relying heavily on mathematical concepts.
Applications of visualization in mathematical research as well as the use of mathematical methods in visualization have been topic of an international workshop in Berlin in June 1995. Selected contributions treat topics of particular interest in current research, addressing subjects like visualization of mathematical spaces, visualization and simulation techniques, mathematical experiments, graphics environments, and description and modeling of geometric objects. Experts in these fields are reporting on their latest work, giving an overview on this fascinating new area. The reader will get insight to state-of-the-art techniques for solving visualization problems and mathematical questions.

Keywords

Computergraphik Differentialgeometrie Wissenschaftliche Visualisierung algorithms computer graphics differential geometry graphics numerical analysis numerical mathematics numerische Mathematik scientific computing scientific visualization simulation visualization wissenschaftliches Rechnen

Editors and affiliations

  • Hans-Christian Hege
    • 1
  • Konrad Polthier
    • 2
  1. 1.Wissenschaftliche VisualisierungKonrad-Zuse-Zentrum für Informationstechnik BerlinBerlinGermany
  2. 2.Fachbereich 3, MathematikTechnische Universität BerlinBerlinGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-59195-2
  • Copyright Information Springer-Verlag Berlin Heidelberg 1997
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-63891-6
  • Online ISBN 978-3-642-59195-2
  • Buy this book on publisher's site