Advertisement

Enzyme Handbook

14: Class 2.7–2.8 Transferases, EC 2.7.1.105–EC 2.8.3.14

  • Dietmar Schomburg
  • Dörte Stephan

Table of contents

  1. Front Matter
    Pages I-XII
  2. Dietmar Schomburg, Dörte Stephan
    Pages 1-9
  3. Dietmar Schomburg, Dörte Stephan
    Pages 11-14
  4. Dietmar Schomburg, Dörte Stephan
    Pages 15-22
  5. Dietmar Schomburg, Dörte Stephan
    Pages 23-26
  6. Dietmar Schomburg, Dörte Stephan
    Pages 27-33
  7. Dietmar Schomburg, Dörte Stephan
    Pages 35-38
  8. Dietmar Schomburg, Dörte Stephan
    Pages 39-46
  9. Dietmar Schomburg, Dörte Stephan
    Pages 47-51
  10. Dietmar Schomburg, Dörte Stephan
    Pages 53-56
  11. Dietmar Schomburg, Dörte Stephan
    Pages 57-61
  12. Dietmar Schomburg, Dörte Stephan
    Pages 63-66
  13. Dietmar Schomburg, Dörte Stephan
    Pages 67-75
  14. Dietmar Schomburg, Dörte Stephan
    Pages 77-79
  15. Dietmar Schomburg, Dörte Stephan
    Pages 81-84
  16. Dietmar Schomburg, Dörte Stephan
    Pages 85-88
  17. Dietmar Schomburg, Dörte Stephan
    Pages 89-91
  18. Dietmar Schomburg, Dörte Stephan
    Pages 93-95
  19. Dietmar Schomburg, Dörte Stephan
    Pages 97-101
  20. Dietmar Schomburg, Dörte Stephan
    Pages 103-105
  21. Dietmar Schomburg, Dörte Stephan
    Pages 107-112
  22. Dietmar Schomburg, Dörte Stephan
    Pages 113-117
  23. Dietmar Schomburg, Dörte Stephan
    Pages 119-123
  24. Dietmar Schomburg, Dörte Stephan
    Pages 125-128
  25. Dietmar Schomburg, Dörte Stephan
    Pages 129-134
  26. Dietmar Schomburg, Dörte Stephan
    Pages 135-138
  27. Dietmar Schomburg, Dörte Stephan
    Pages 139-141
  28. Dietmar Schomburg, Dörte Stephan
    Pages 143-146
  29. Dietmar Schomburg, Dörte Stephan
    Pages 147-150
  30. Dietmar Schomburg, Dörte Stephan
    Pages 151-153
  31. Dietmar Schomburg, Dörte Stephan
    Pages 155-157
  32. Dietmar Schomburg, Dörte Stephan
    Pages 159-162
  33. Dietmar Schomburg, Dörte Stephan
    Pages 163-166
  34. Dietmar Schomburg, Dörte Stephan
    Pages 167-169
  35. Dietmar Schomburg, Dörte Stephan
    Pages 171-173
  36. Dietmar Schomburg, Dörte Stephan
    Pages 175-177
  37. Dietmar Schomburg, Dörte Stephan
    Pages 179-183
  38. Dietmar Schomburg, Dörte Stephan
    Pages 185-187
  39. Dietmar Schomburg, Dörte Stephan
    Pages 189-196
  40. Dietmar Schomburg, Dörte Stephan
    Pages 197-201
  41. Dietmar Schomburg, Dörte Stephan
    Pages 203-212
  42. Dietmar Schomburg, Dörte Stephan
    Pages 213-222
  43. Dietmar Schomburg, Dörte Stephan
    Pages 223-225
  44. Dietmar Schomburg, Dörte Stephan
    Pages 227-230
  45. Dietmar Schomburg, Dörte Stephan
    Pages 231-235
  46. Dietmar Schomburg, Dörte Stephan
    Pages 237-239
  47. Dietmar Schomburg, Dörte Stephan
    Pages 241-244
  48. Dietmar Schomburg, Dörte Stephan
    Pages 245-247
  49. Dietmar Schomburg, Dörte Stephan
    Pages 249-251
  50. Dietmar Schomburg, Dörte Stephan
    Pages 253-255

About this book

Introduction

Today, as the large international genome sequence projects are gaining a great amount of public attention and huge sequence data bases are created it be­ comes more and more obvious that we are very limited in our ability to access functional data for the gene products -the proteins, in particular for enzymes. Those data are inherently very difficult to collect, interpret and standardize as they are highly distributed among journals from different fields and are often sub­ ject to experimental conditions. Nevertheless a systematic collection is essential for our interpretation of the genome information and more so for possible appli­ cations of that knowledge in the fields of medicine, agriculture, etc .. Recent pro­ gress on enzyme immobilization, enzyme production, enzyme inhibition, coen­ zyme regeneration and enzyme engineering has opened up fascinating new fields for the potential application of enzymes in a large range of different areas. It is the functional profile of an enzyme that enables a biologist of physician to analyze a metabolic pathway and its disturbance; it is the substrate specificity of an enzyme which tells an analytical biochemist how to design an assay; it is the stability, specificity and efficiency of an enzyme which determines its usefulness in the biotechnical transformation of a molecule. And the sum of all these data will have to be considered when the designer of artificial biocatalysts has to choose the optimum prototype to start with.

Keywords

ATP Alanin Aspartat DNA Disaccharid Galactose Glutamat NADPH Nucleotide Oligosaccharid Pyrimidine RNA biotechnology enzymes reaction

Editors and affiliations

  • Dietmar Schomburg
    • 1
  • Dörte Stephan
    • 2
  1. 1.Institut für BiochemieUniversität zu KölnKölnGermany
  2. 2.GBF-Gesellschaft für Biotechnologische Forschung mbHBraunschweigGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-59025-2
  • Copyright Information Springer-Verlag Berlin Heidelberg 1997
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-47773-7
  • Online ISBN 978-3-642-59025-2
  • Buy this book on publisher's site
Industry Sectors
Pharma
Chemical Manufacturing
Biotechnology
Consumer Packaged Goods