Advertisement

© 2004

Compact Complex Surfaces

Book

Table of contents

  1. Front Matter
    Pages I-XII
  2. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 1-12
  3. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 13-59
  4. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 61-87
  5. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 89-134
  6. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 135-184
  7. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 185-242
  8. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 243-267
  9. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 269-301
  10. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 307-373
  11. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven
    Pages 375-399
  12. Back Matter
    Pages 401-436

About this book

Introduction

In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac­ cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.

Authors and affiliations

  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für MathematikUniversität HannoverHannoverGermany
  3. 3.Institut FourierUniversité Grenoble ISt.-Martin d’Héres CedexFrance
  4. 4.Mathematisch InstituutUniversiteit LeidenLeidenThe Netherlands

Bibliographic information

  • Book Title Compact Complex Surfaces
  • Authors W. Barth
    K. Hulek
    Chris Peters
    A.van de Ven
  • Series Title Ergebnisse der Mathematik und ihrer Grenzgebiete / A Series of Modern Surveys in Mathematics
  • DOI https://doi.org/10.1007/978-3-642-57739-0
  • Copyright Information Springer-Verlag Berlin Heidelberg 2004
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Hardcover ISBN 978-3-540-00832-3
  • Softcover ISBN 978-3-642-57738-3
  • eBook ISBN 978-3-642-57739-0
  • Series ISSN 0071-1136
  • Series E-ISSN 2197-5655
  • Edition Number 2
  • Number of Pages XII, 436
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Algebraic Geometry
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking