Advertisement

© 2014

Advances in Calcium Phosphate Biomaterials

  • Besim Ben-Nissan
Book

Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 2)

Table of contents

  1. Front Matter
    Pages i-xxi
  2. Racquel Z. LeGeros, Besim Ben-Nissan
    Pages 1-17
  3. Hiroyuki Oonishi Jr., Hironobu Oonishi, Hirotsugu Ohashi, Ikuo Kawahara, Yoshifumi Hanaoka, Ryoko Iwata et al.
    Pages 19-49
  4. Guy Daculsi, Borhane Hakim Fellah, Thomas Miramond
    Pages 71-96
  5. Kunio Ishikawa
    Pages 199-227
  6. Christian Rey, Olivier Marsan, Christèle Combes, Christophe Drouet, David Grossin, Stéphanie Sarda
    Pages 229-266
  7. C. C. Berndt, Fahad Hasan, U. Tietz, K.-P. Schmitz
    Pages 267-329
  8. Alexandre A. Barros, Álvaro J. Leite, Ricardo A. Pires, João F. Mano, Rui L. Reis
    Pages 331-353
  9. Feza Korkusuz, Muharrem Timuçin, Petek Korkusuz
    Pages 373-390
  10. Besim Ben-Nissan, David W. Green
    Pages 391-414
  11. Joshua Chou, Jia Hao, Besim Ben-Nissan, Bruce Milthorpe, Makoto Otsuka
    Pages 415-433
  12. Andy H. Choi, Besim Ben-Nissan, Richard C. Conway, Innocent J. Macha
    Pages 485-509
  13. Mahdi Shahmoradi, Luiz E. Bertassoni, Hunida M. Elfallah, Michael Swain
    Pages 511-547

About this book

Introduction

Advances in Calcium Phosphate Biomaterials presents a comprehensive, state-of-the-art review of the latest advances in developing calcium phosphate biomaterials and their applications in medicine. It covers the fundamental structures, synthesis methods, characterization methods, and the physical and chemical properties of calcium phosphate biomaterials, as well as the synthesis and properties of calcium phosphate-based biomaterials in regenerative medicine and their clinical applications. The book brings together these new concepts, mechanisms and methods in contributions by both young and “veteran” academics, clinicians, and researchers to forward the knowledge and expertise on calcium phosphate and related materials. Accordingly, the book not only covers the fundamentals but also opens new avenues for meeting future challenges in research and clinical applications.

Besim Ben-Nissan is a Professor of Chemistry and Forensic Science at the University of Technology, Sydney, Australia

Keywords

Bioactive composites Bioactive glass Calcium phosphate bioceramics Drug Delivery Hydroxyapatite coatings Marine Structures Nanocrystalline Apatite Orthopaedics Regenerative Medicine Tissue Engineering

Editors and affiliations

  • Besim Ben-Nissan
    • 1
  1. 1.Chemistry and Forensic ScienceUniversity of TechnologySydneyAustralia

About the editors

Prof. Ben-Nissan has an MSc degree in Ceramic Engineering and a PhD in Mechanical and Biomedical Engineering, both from the UNSW Australia.

Over the last three decades, Prof. Ben-Nissan has worked in and contributed to the biomedical materials and implant design areas, production and analysis of various calcium phosphate biomaterials, nanocoated sol-gel developed thin films, slow drug delivery, conversion of marine structures to biomedical materials, and finite element analysis of material structures.

He has made significant contributions in the field of advanced ceramics, and successfully developed materials for implant technology (bioactive materials including the conversion of Australian corals to hydroxyapatite), bone graft production and bio-composites, and conducted investigative research on biomechanics (mandible, knee and hip joints), reliability and implant design (modular zirconia ceramic knee prostheses, femoral head and taper stresses, and bionic eyes).

He has expertise in zirconia and hydroxyapatite ceramics, transformations and measurement of micro-mechanical stresses in ceramics and biomaterials. He is involved in consulting work related to various patent litigations in biomaterials and devices areas. His current research involves calcium phosphates, nanocoatings, bioactive bone grafts and the use of biomimetics approaches in slow drug delivery.

Prof. Ben-Nissan has published over 90 fully refereed papers in journals, as well as several book chapters. He is the editor of the Journal of the Australasian Ceramic Society and received The Australasian Ceramic Society Award for his "Sustained Contribution to the Ceramics Research & Development and Education in Australia". In 2006 his research on hydroxyapatite nanocoatings was recognized with the “Future Materials Award”.

Bibliographic information

Industry Sectors
Biotechnology
Chemical Manufacturing
Pharma

Reviews

From the book reviews:

“This is an overview of the role of artificial cements, hydroxyapatite, and other biomaterials in Orthopaedics. The coverage is current and suggests that artificial materials determined to be biocompatible are very helpful in the stability, longevity, and prognosis of hip arthroplasties, fractures and other applications. … I recommend this book highly to biomechanics and orthopedic specialists.” (Joseph J. Grenier, Amazon.com, August, 2014)