Computer Algebra in Scientific Computing

14th International Workshop, CASC 2012, Maribor, Slovenia, September 3-6, 2012. Proceedings

  • Vladimir P. Gerdt
  • Wolfram Koepf
  • Ernst W. Mayr
  • Evgenii V. Vorozhtsov
Conference proceedings CASC 2012

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)

Table of contents

  1. Front Matter
  2. Prabhanjan Ananth, Ambedkar Dukkipati
    Pages 12-21
  3. Pavel Bourdykine, Stephen M. Watt
    Pages 47-59
  4. Alexander D. Bruno, Victor F. Edneral
    Pages 60-71
  5. Hassan Errami, Werner M. Seiler, Markus Eiswirth, Andreas Weber
    Pages 84-97
  6. Vladimir Gerdt, Amir Hashemi
    Pages 98-116
  7. Jaume Giné, Colin Christopher, Mateja Prešern, Valery G. Romanovski, Natalie L. Shcheglova
    Pages 129-142
  8. Alexander Gusev, Sergue Vinitsky, Ochbadrakh Chuluunbaatar, Vladimir Gerdt, Luong Le Hai, Vitaly Rostovtsev
    Pages 155-171
  9. Amir Hashemi, Michael Schweinfurter, Werner M. Seiler
    Pages 172-184
  10. Steffen Marcus, Marc Moreno Maza, Paul Vrbik
    Pages 198-211
  11. Marc Moreno Maza, Éric Schost, Paul Vrbik
    Pages 224-235
  12. Michael Monagan, Roman Pearce
    Pages 236-247
  13. Victor Y. Pan, Guoliang Qian, Ai-Long Zheng
    Pages 271-282
  14. Victor Y. Pan
    Pages 283-293
  15. Satya Swarup Samal, Hassan Errami, Andreas Weber
    Pages 294-307
  16. Jing Yang, Dongming Wang, Hoon Hong
    Pages 349-360
  17. Back Matter

About these proceedings


This book constitutes the proceedings of the 14th International Workshop on Computer Algebra in Scientific Computing, CASC 2012, held in Maribor, Slovenia, in September 2012. The 28 full papers presented were carefully reviewed and selected for inclusion in this book.

One of the main themes of the CASC workshop series, namely polynomial algebra, is represented by contributions devoted to new algorithms for computing comprehensive Gröbner and involutive systems,
parallelization of the Gröbner bases computation, the study of quasi-stable polynomial ideals, new algorithms to compute the Jacobson form of a matrix of Ore polynomials, a recursive Leverrier algorithm for inversion of dense matrices whose entries are monic polynomials, root isolation of zero-dimensional triangular polynomial systems, optimal computation of the third power of a long integer, investigation of the complexity of solving systems with few independent monomials, the study of ill-conditioned polynomial systems, a method for polynomial root-finding via eigen-solving and randomization, an algorithm for fast dense polynomial multiplication with Java using the new opaque typed method, and sparse polynomial powering using heaps.


complexity holonomic functions long integers parallel algorithms polynomial factorization

Editors and affiliations

  • Vladimir P. Gerdt
    • 1
  • Wolfram Koepf
    • 2
  • Ernst W. Mayr
    • 3
  • Evgenii V. Vorozhtsov
    • 4
  1. 1.Laboratory of Information Technologies (LIT)Joint Institute for Nuclear Research (JINR)DubnaRussia
  2. 2.Institut für MathematikUniversität KasselKasselGermany
  3. 3.Institut für Informatik, Lehrstuhl für Effiziente AlgorithmenTechnische Universität MünchenGarchingGermany
  4. 4.Institute of Theoretical and Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 2012
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Computer Science Computer Science (R0)
  • Print ISBN 978-3-642-32972-2
  • Online ISBN 978-3-642-32973-9
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site
Industry Sectors
Materials & Steel
IT & Software
Consumer Packaged Goods
Finance, Business & Banking
Energy, Utilities & Environment