Polyploidy and Genome Evolution

  • Pamela S. Soltis
  • Douglas E. Soltis

Table of contents

  1. Front Matter
    Pages i-viii
  2. C. L. McGrath, M. Lynch
    Pages 1-20
  3. James A. Birchler
    Pages 21-32
  4. Marie-Luise Zielinski, Ortrun Mittelsten Scheid
    Pages 33-55
  5. Patrick Finigan, Milos Tanurdzic, Robert A. Martienssen
    Pages 57-76
  6. Andrew H. Paterson, Xiyin Wang, Jingping Li, Haibao Tang
    Pages 93-108
  7. Moshe Feldman, Avraham Levy, Boulos Chalhoub, Khalil Kashkush
    Pages 109-135
  8. Jeff J. Doyle
    Pages 147-180
  9. Jonathan F. Wendel, Lex E. Flagel, Keith L. Adams
    Pages 181-207
  10. Ales Kovarik, Simon Renny-Byfield, Marie-Angèle Grandbastien, Andrew Leitch
    Pages 209-224
  11. M. Ainouche, H. Chelaifa, J. Ferreira, S. Bellot, A. Ainouche, A. Salmon
    Pages 225-243
  12. Matthew J. Hegarty, Richard J. Abbott, Simon J. Hiscock
    Pages 245-270
  13. Douglas E. Soltis, Richard J. A. Buggs, W. Brad Barbazuk, Srikar Chamala, Michael Chester, Joseph P. Gallagher et al.
    Pages 271-292
  14. Ingo Braasch, John H. Postlethwait
    Pages 341-383
  15. Ben J. Evans, R. Alexander Pyron, John J. Wiens
    Pages 385-410
  16. M. Ainouche, H. Chelaifa, J. Ferreira, S. Bellot, A. Ainouche, A. Salmon
    Pages E1-E1
  17. Back Matter
    Pages 411-415

About this book


Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution.  Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes.  In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage.  This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation.


This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups.  Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes.  The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.


Gene regulation Genome duplication Genome evolution Genome regulation Polyploidy

Editors and affiliations

  • Pamela S. Soltis
    • 1
  • Douglas E. Soltis
    • 2
  1. 1., Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  2. 2., Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA

Bibliographic information

Industry Sectors
Oil, Gas & Geosciences