Advertisement

© 2013

Control of Higher–Dimensional PDEs

Flatness and Backstepping Designs

Book

Part of the Communications and Control Engineering book series (CCE)

Table of contents

  1. Front Matter
    Pages 1-17
  2. Introduction and Survey

    1. Front Matter
      Pages 1-1
    2. Thomas Meurer
      Pages 3-20
  3. Modeling and Application Examples

  4. Trajectory Planning and Feedforward Control

  5. Feedback Stabilization, Observer Design, and Tracking Control

  6. Back Matter
    Pages 0--1

About this book

Introduction

This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area.

The text is divided into five parts featuring:

- a literature survey of paradigms and control design methods for PDE systems

- the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures

- the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains

- an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters

- the development of design techniques to realize exponentially stabilizing tracking control

- the evaluation in simulations and experiments

Control of Higher-Dimensional PDEs — Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.

Keywords

Backstepping Control Theory Differential Flatness Feedback Stabilization Motion Planning Trajectory Planning

Authors and affiliations

  1. 1.Automation and Control Institute / E376Vienna University of TechnologyViennaAustria

Bibliographic information

  • Book Title Control of Higher–Dimensional PDEs
  • Book Subtitle Flatness and Backstepping Designs
  • Authors Thomas Meurer
  • Series Title Communications and Control Engineering
  • DOI https://doi.org/10.1007/978-3-642-30015-8
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Engineering Engineering (R0)
  • Hardcover ISBN 978-3-642-30014-1
  • Softcover ISBN 978-3-642-43509-6
  • eBook ISBN 978-3-642-30015-8
  • Series ISSN 0178-5354
  • Edition Number 1
  • Number of Pages XX, 368
  • Number of Illustrations 0 b/w illustrations, 0 illustrations in colour
  • Topics Control and Systems Theory
    Systems Theory, Control
  • Buy this book on publisher's site
Industry Sectors
Automotive
Chemical Manufacturing
Biotechnology
Electronics
IT & Software
Telecommunications
Aerospace
Pharma
Materials & Steel
Oil, Gas & Geosciences
Engineering

Reviews

From the reviews:

“This research monograph is designed for graduate students in applied mathematics and control theory and also as a reference for control engineers and mathematics researchers working in the control of PDEs. The book has a section on modeling that is an excellent reference for graduate students aiming to understand the derivation of partial differential models related to applications and control. The theoretical results are complemented with simulations and numerical experiments.” (Luz de Teresa, Mathematical Reviews, October, 2013)

“The reviewed monograph is devoted to a systematic study of various control problems for dynamical systems governed by partial differential equations with higher-dimensional spatial domain. … it should be pointed out, that the reviewed monograph contains an extensive list of references, many remarks and comments on distributed infinite-dimensional control systems with higher-dimensional spatial domain and examples which illustrate the theoretical considerations.” (Jerzy Klamka, Zentralblatt MATH, Vol. 1253, 2013)